FEATURES:

- Functionally equivalent to QS3257
- 5Ω bi-directional switch connection between two ports
- Isolation under power-off conditions
- Over-voltage tolerant
- Latch-up performance exceeds 100 mA
- Vcc = 2.3V-3.6V, Normal Range
- ESD > 2000V per MIL-STD-883, Method 3015;
$>200 \mathrm{~V}$ using machine model ($\mathrm{C}=200 \mathrm{pF}, \mathrm{R}=0$)
- Available in QSOP and TSSOP packages

APPLICATIONS:

- 3.3V High Speed Bus Switching, Multiplexing, and Bus Isolation

FUNCTIONAL BLOCK DIAGRAM

DESCRIPTION:

The CBTLV3257 is a quad 2:1 multiplexer/demultiplexer. The low onstate resistance of the switch allows connections to be made with minimal propagation delay.
The select(S)inputcontrols the dataflow. The multiplexers/demultiplexers are enabled when the output-enable $(\overline{\mathrm{OE}})$ input is low.

To ensure the high-impedance state during power up or power down, $\overline{\mathrm{OE}}$ should be tied to Vcc through a pullup resistor; the minimum value of the resistor is determined by the current-sinking capability of the driver.

SIMPLIFIED SCHEM ATIC, EACH SWITCH

PIN CONFIGURATION

ABSOLUTE MAXIMUM RATINGS(1)

Symbol	Description	Max	Unit
VCc	SupplyVoltage Range	-0.5 to +4.6	V
VI	Input Voltage Range	-0.5 to +4.6	V
	Continuous Channel Current	128	mA
IIK	Input Clamp Current, VI/O <0	-50	mA
TSTG	Storage Temperature	-65 to +150	${ }^{\circ} \mathrm{C}$

NOTE:

1. Stresses greater than those listed under ABSOLUTE MAXIMUM RATINGS may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect reliability.

FUNCTION TABLE(1)

Inputs		
$\overline{\mathrm{O}} \overline{\mathrm{E}}$	S	
L	L	A Port = B1 Port
L	H	A Port = B2 Port
H	X	Disconnect

NOTE:

1. $\mathrm{H}=\mathrm{HIGH}$ Voltage Level

L = LOW Voltage Level
X = Don't Care

OPERATING CHARACTERISTICS, $\mathrm{TA}_{\mathrm{A}}=25^{\circ} \mathrm{C}(1)$

Symbol	Parameter	Test Conditions	Min.	Max.	Unit
Vcc	Supply Voltage		2.3	3.6	V
VIH	High-Level Control Input Voltage	$\mathrm{Vcc}=2.3 \mathrm{~V}$ to 2.7V	1.7	-	V
		$\mathrm{Vcc}=2.7 \mathrm{~V}$ to 3.6 V	2	-	
VIL	Low-Level Control Input Voltage	$\mathrm{Vcc}=2.3 \mathrm{~V}$ to 2.7 V	-	0.7	V
		$\mathrm{Vcc}=2.7 \mathrm{~V}$ to 3.6 V	-	0.8	
TA	Operating Free-Air Temperature		-40	85	${ }^{\circ} \mathrm{C}$

NOTE:

1. All unused control inputs of the device must be held at Vcc or GND to ensure proper device operation.

DC ELECTRICAL CH ARACTERISTICS OVER OPERATING RANGE

Following Conditions Apply Unless Otherwise Specified:
Operating Conditions: $\mathrm{TA}=-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$

Symbol	Parameter	Test Conditions		Min.	Typ. ${ }^{(1)}$	Max.	Unit
VIK	Control Inputs, Data Inputs	$\mathrm{VcC}=3 \mathrm{~V}, \mathrm{II}=-18 \mathrm{~mA}$		-	-	-1.2	V
11	Control Inputs	$\mathrm{Vcc}=3.6 \mathrm{~V}, \mathrm{VI}=\mathrm{Vcc}$ or GND		-	-	± 1	$\mu \mathrm{A}$
Ioz	Data I/O	$\mathrm{Vcc}=3.6 \mathrm{~V}$, Vo $=0$ or 3.6 V , switch disabled		-	-	20	$\mu \mathrm{A}$
IofF		$\mathrm{Vcc}=0, \mathrm{VI}$ or $\mathrm{Vo}=0$ to 3.6 V		-	-	50	$\mu \mathrm{A}$
ICC		$\mathrm{Vcc}=3.6 \mathrm{~V}, \mathrm{lo}=0, \mathrm{VI}=\mathrm{Vcc}$ or GND		-	-	10	$\mu \mathrm{A}$
$\Delta \mathrm{lcc}{ }^{(2)}$	Control Inputs	$\mathrm{Vcc}=3.6 \mathrm{~V}$, one input at 3 V , other inputs at Vcc or GND		-	-	300	$\mu \mathrm{A}$
Cl	Control Inputs	V I $=3 \mathrm{~V}$ or 0		-	4	-	pF
CIo(OFF)	A Port	$\mathrm{Vo}=3 \mathrm{~V}$ or $0, \overline{\mathrm{OE}}=\mathrm{VCC}=3.3 \mathrm{~V}$		-	13	-	pF
	B Port			-	6	-	
Ron ${ }^{(3)}$	$\mathrm{Vcc}=2.3 \mathrm{~V}$	$V_{1}=0$	$10=64 \mathrm{~mA}$	-	5	8	Ω
	Typ. at $\mathrm{Vcc}=2.5 \mathrm{~V}$		$10=24 \mathrm{~mA}$	-	5	8	
		$\mathrm{V}_{1}=1.7 \mathrm{~V}$	$10=15 \mathrm{~mA}$	-	27	40	
	$\mathrm{Vcc}=3 \mathrm{~V}$	V I $=0$	$10=64 \mathrm{~mA}$	-	5	7	
			$10=24 \mathrm{~mA}$	-	5	7	
		V I $=2.4 \mathrm{~V}$	$\mathrm{I}=15 \mathrm{~mA}$	-	10	15	

NOTES:

1. Typical values are at $\mathrm{Vcc}=3.3 \mathrm{~V},+25^{\circ} \mathrm{C}$ ambient.
2. The increase in supply current is attributable to each current that is at the specified voltage level rather than Vcc or GND.
3. This is measured by the voltage drop between the A and B terminals at the indicated current through the switch. On-state resistance is determined by the lower of the voltages of the two (A or B) terminals.

SWITCHING CHARACTERISTICS

NOTE:

1. The propagation delay is the calculated RC time constant of the typical on-state resistance of the switch and the specified load capacitance driven by an ideal voltage source (zero output impedance).

TEST CIRCUITS AND WAVEFORMS
TEST CONDITIONS

Symbol	$\mathrm{Vcc}^{(1)} \mathbf{=} \mathbf{3 . 3} \mathbf{V} \pm \mathbf{0 . 3} \mathrm{V}$	$\mathrm{Vcc}^{(2)} \mathbf{2} . \mathbf{5 V} \pm \mathbf{0 . 2} \mathbf{V}$	Unit
VLOAD	6	$2 \times \mathrm{Vcc}$	V
VIH	3	Vcc	V
$\mathrm{V} T$	1.5	$\mathrm{Vcc} / 2$	V
VLZ	300	150	mV
VHZ	300	150	mV
CL	50	30	pF

Test Circuits for All Outputs

DEFINITIONS:

$\mathrm{CL}=$ Load capacitance: includes jig and probe capacitance.
RT = Termination resistance: should be equal to Zout of the Pulse Generator.

NOTES:

1. Pulse Generator for All Pulses: Rate $\leq 10 \mathrm{MHz}$; tr $\leq 2.5 \mathrm{~ns}$; $\mathrm{tR} \leq 2.5 \mathrm{~ns}$.
2. Pulse Generator for All Pulses: Rate $\leq 10 \mathrm{MHz}$; $\mathrm{tr} \leq 2 \mathrm{~ns}$; $\mathrm{tR} \leq 2.5 \mathrm{~ns}$.

SWITCH POSITION

Test	Switch
tpZltPzL	VLOAD
tPHZItPZH	GND
tsel	Open
tPD	Open

Propagation Delay

Enable and Disable Times

ORDERING INFORMATION

Datasheet Document History

12/18/2014 Pg. $5 \quad$ Updated the ordering information by removing non RoHS part and by adding Tape and Reel information.

800-345-7015 or 408-284-8200 fax: 408-284-2775
www.idt.com
for Tech Support:
logichelp@idt.com

