mikroBasic PRO for dsPIC"

mikroBasic PRO for dsPIC30/33 and PIC24 is a full-featured Basic
compiler for dsPIC30, dsPIC33 and PIC24 MCUs from Microchip. It
is designed for developing, building and debugging dsPIC30/33 and
PIC24-based embedded applications. This development environment
has a wide range of features such as: easy-to-use IDE, very compact and
efficient code, many hardware and software libraries, comprehensive
documentation, software simulator, COFF file generation, SSA
optimization (up to 30% code reduction) and many more. Numerous
ready-to-use and well-explained examples will give a good start for
your embedded project.

ZJMikroElektronika

SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD . . . cvalkiveg ik sinple

mikoBasic PRO for dsPIC30/33 and PIC24

Table of Contents

CHAPTER 1 30
INTRODUCTION 30
Introduction to mikroBasic PRO for dsPIC30/33 and PIC24 31
Features 31
Where to Start 31
What's new in mikroBasic PRO for dsPIC30/33 and PIC24 32
Compiler Changes 32
IDE Changes 32
Software License Agreement 33
mikroElektronika Associates License Statement and Limited Warranty 33
IMPORTANT - READ CAREFULLY 33
LIMITED WARRANTY 33
HIGH RISK ACTIVITIES 34
GENERAL PROVISIONS 34
Technical Support 35
How to Register 35
Who Gets the License Key 35
How to Get License Key 35
After Receving the License Key 37
CHAPTER 2 39
mikroBasic PRO for dsPIC30/33 and PIC24 Environment 39
Main Menu Options 40
File 41
File Menu Options 41
Edit 42
Edit Menu Options 42
Find Text 43
Replace Text 43
Find In Files 44
Go To Line 44
Regular expressions option 44
View 45
View Menu Options 45
Project 47
Project Menu Options 47
Build 48
Build Menu Options 48
Run 49
Run Menu Options 49
Tools 50
Tools Menu Options 50
MikroElektronika

mikroBasic PRO for dsPIC30/33 and PIC24

Help

mikroBasic PRO for dsPIC30/33 and PIC24 IDE

Help Menu Options

IDE Overview

Code Editor

Editor Settings

Auto Save
Highlighter

Spelling

Comment Style
Code Folding

Code Assistant
Parameter Assistant
Bookmarks

Go to Line

Column Select Mode
Editor Colors

Auto Correct

Auto Complete (Code Templates)

Code Explorer

Routine List

Project Manager
Project Settings
Library Manager

Managing libraries using Package Manager

Routine List
Statistics

Memory Usage Windows

RAM Memory Usage

Used RAM Locations

SFR Locations

ROM Memory Usage

ROM Memory Constants
Functions

Functions Sorted By Name Chart
Functions Sorted By Size Chart
Functions Sorted By Addresses
Function Tree

Memory Summary

Messages Window
Quick Converter
Macro Editor
Image Preview
Toolbars

51
51

52
52

53
53
54
54
54
54
54
55
55
55
55
56
56
57
58

60
61

61
63

64
65

66

66
66
67
67
68
68
69
69
70
70
71
71
72

73
74
74
75
7

mikoBasic PRO for dsPIC30/33 and PIC24

File Toolbar

Edit Toolbar
Advanced Edit Toolbar
Find/Replace Toolbar
Project Toolbar

Build Toolbar

Debug Toolbar
Styles Toolbar

Tools Toolbar

View Toolbar

Layout Toolbar

Help Toolbar

Customizing IDE Layout
Docking Windows
Saving Layout
Auto Hide

Options
Code editor
Tools
Output settings

Integrated Tools
Active Comments Editor
ASCII Chart
EEPROM Editor
Filter Designer
Graphic Lcd Bitmap Editor
HID Terminal
Lcd Custom Character
Seven Segment Editor
UDP Terminal
USART Terminal

Active Comments
New Active Comment
Renaming Active Comment
Deleting Active Comment
Export Project
Jump To Interrupt
Regular Expressions
Introduction
Simple matches
Escape sequences
Character classes
Metacharacters
Metacharacters - Line separators
Metacharacters - Predefined classes

78
78
79
79
80
80
81
81
82
82
83
83

84
84
85
85

86
86
86
87

89
89
90
91
91
92
93
94
95
95
96

97

97
104
105

106
107

108
108
108
108
108
109
109
110

4

mikroBasic PRO for dsPIC30/33 and PIC24

Metacharacters - Word boundaries
Metacharacters - Iterators
Metacharacters - Alternatives
Metacharacters - Subexpressions
Metacharacters - Backreferences

110
110
111
111
111

Keyboard Shortcuts 112
CHAPTER 3 114
mikroBasic PRO for dsPIC30/33 and PIC24 Command Line Options 114
CHAPTER 4 116
mikrolCD (In-Circuit Debugger) 116
Introduction 116
mikrolCD Debugger Options 118
Debugger Options 118
mikrolCD Debugger Example 119
mikrolCD Debugger Windows 123
Debug Windows 123
Breakpoints Window 123
Watch Values Window 123

RAM Window 125
Stopwatch Window 125
EEPROM Watch Window 126

Code Watch Window 127
CHAPTER 5 128
Software Simulator Overview 128
Software Simulator 129
Software Simulator Debug Windows 130
Debug Windows 130
Breakpoints Window 130
Watch Values Window 130

RAM Window 132
Stopwatch Window 132
EEPROM Watch Window 133

Code Watch Window 134
Software Simulator Debugger Options 135
Debugger Options 135
CHAPTER 6 136
mikroBasic PRO for dsPIC30/33 and PIC24 Specifics 136
GOTO Table 137
Basic Standard Issues 138
Divergence from the Basic Standard 138

C Language Extensions 138
Predefined Globals and Constants 139
Predefined project level defines 139
MikroElektronika

mikoBasic PRO for dsPIC30/33 and PIC24

Accessing Individual Bits
sbit type
at keyword
bit type
Interrupts
Function Calls from Interrupt
Interrupt Handling
Interrupt Example

Linker Directives
Directive absolute
Directive orgall
Directive orgall

Built-in Routines
Lo
Hi
Higher
Highest
LoWord
HiWord
Inc
Dec
Chr
Ord
SetBit
ClearBit
TestBit
Delay_us
Delay_ms
Vdelay_ms
VDelay_advanced_ms
Delay Cyc
Delay Cyc Long
Clock_kHz
Clock_MHz
Get_Fosc_kHz
Get_Fosc_Per_Cyc
Reset
Clrwdt
DisableContextSaving()
SetFuncCall
SetOrg
DoGetDateTime
DoGetVersion

Code Optimization

Constant folding
Constant propagation

140
141
142
142

143
143
143
144

145
145
145
146

147
148
148
149
149
150
150
151
151
151
152
152
152
153
153
153
154
154
155
155
155
156
156
156
157
157
157
158
158
159
159

160
160
160

mikroBasic PRO for dsPIC30/33 and PIC24

Copy propagation 160

Value numbering 160
"Dead code" ellimination 160
Stack allocation 160

Local vars optimization 160
Better code generation and local optimization 160
Single Static Assignment Optimization 161
Introduction 161
Proper Coding Recommendations 162

Asm code and SSA optimization 163
Debugging Notes 163
Warning Messages Enhancement 163
Common Object File Format (COFF) 164
COFF File Format 164
COFF File Generation 164
CHAPTER 7 166
dsPIC30/33 and PIC24 Specifics 166
Types Efficiency 167
Nested Calls Limitations 167
Limits of Indirect Approach Through PSV 167
Limits of Pointer to Function 167
Variable, constant and routine alignment 167
dsPIC Memory Organization 168
Program Memory (ROM) 168

Data Memory (RAM) 169

SFR Memory Space 169

X and Y Data RAM 169

DMA RAM 170
Unimplemented Memory Space 170
Memory Type Specifiers 171
code 171

data 171

rx 171

sfr 171

xdata 172

ydata 172

dma 172
Memory Type Qualifiers 173
Near Memory Qualifier 173

Far Memory Qualifier 173
Read Modify Write Problem 174
CHAPTER 8 178
mikroBasic PRO for dsPIC30/33 and PIC24 Language Reference 178
Lexical Elements Overview 180

1 MikroElektronika

mikoBasic PRO for dsPIC30/33 and PIC24

Whitespace
Newline Character
Whitespace in Strings

Comments

Tokens
Token Extraction Example

Literals
Integer Literals
Floating Point Literals
Character Literals
String Literals

Keywords

Identifiers
Case Sensitivity
Uniqueness and Scope
Identifier Examples

Punctuators
Brackets
Parentheses
Comma
Colon
Dot
Program Organization
Organization of Main Module
Organization of Other Modules
Scope and Visibility
Scope
Visibility
Name Spaces
Modules
Include Clause
Main Module
Other Modules
Variables
External Modifier
Variables and dsPIC30/33 and PIC24
Constants
Labels
Symbols
Functions and Procedures
Functions
Procedures
Forward declaration
Functions reentrancy

181
181
181

182

182
182

183
183
183
184
184

185

188
188
188
188

189
189
189
189
190
190

190
190
191

192
192
193

193

194
194
194
195

196
196
197

198

198

199

200
200
201
202
203

mikroBasic PRO for dsPIC30/33 and PIC24

Types
Type Categories
Simple Types
Derived Types
Arrays
Array Declaration
Constant Arrays
Multi-dimensional Arrays
Strings
String Concatenating
Pointers
Pointers and memory spaces
Function Pointers
@ Operator
Pointer Arithmetic
Assignment and Comparison
Pointer Addition
Pointer Subtraction
Structures
Structure Member Access
Types Conversions
Implicit Conversion
Explicit Conversion
Conversions Examples
Typedef Specifier

Type Qualifiers
Qualifier const

Qualifier volatile

Operators
Operators Precedence and Associativity

Arithmetic Operators
Arithmetic Operators Overview
Division by Zero
Unary Arithmetic Operators
Relational Operators
Relational Operators Overview
Relational Operators in Expressions

Bitwise Operators
Bitwise Operators Overview
Logical Operations on Bit Level
Unsigned and Conversions
Signed and Conversions
Bitwise Shift Operators

Boolean Operators

203
203
204
204
204
204
205
205
206
206
207
208
208
209
210
210
211
211
213
213
214
214
215
215
216

216
216

217

217
217

217
218
218
218

219
219
219

219
219
220
220
221
221

221

mikoBasic PRO for dsPIC30/33 and PIC24

Unary Operators 222
Unary Arithmetic Operator 222
Unary Bitwise Operator 222
Address and Indirection Operator 222

Sizeof Operator 223
Sizeof Applied to Expression 223
Sizeof Applied to Type 223

Expressions 224
Expression Evaluation 224

Statements 225

Assignment Statements 226

Conditional Statements 226

If Statement 226
Nested if statements 226

Select Case Statement 227
Nested Case Statements 228

Iteration Statements 228

For Statement 229
Endless Loop 229

While Statement 229

Do Statement 230

Jump Statements 231

Break and Continue Statements 231
Break Statement 231
Continue Statement 231

Exit Statement 232

Return Statement 232

Goto Statement 232

Gosub Statement 233

asm Statement 234
Accessing variables 234
Asm code and SSA optimization 235

Directives 235

Compiler Directives 235
Directives #DEFINE and #UNDEFINE 236
Directives #IFDEF, #/IFNDEF, #ELSE and #ENDIF 236
Include Directive #l 237

Linker Directives 237
Directive absolute 237
Directive org 238

CHAPTER 9 239

mikroBasic PRO for dsPIC30/33 and PIC24 Libraries 239

MikroElektronika

10

mikroBasic PRO for dsPIC30/33 and PIC24

Hardware Libraries

Digital Signal Processing Libraries
Miscellaneous Libraries

Hardware Libraries

ADC Library

Library Routines
ADCx_Init
ADCx_Init_Advanced
ADCx_Get_Sample
ADCx_Read
ADC_Set_Active
Library Example

CAN Library

Library Routines
CANxSetOperationMode
CANxGetOperationMode
CANXxInitialize

CANxSetBaudRate

CANxSetMask

CANXxSetFilter

CANxRead

CANxWrite

CAN Constants

CAN_OP_MODE Constants
CAN_CONFIG_FLAGS Constants
CAN_TX MSG_FLAGS Constants
CAN_RX MSG_FLAGS Constants
CAN_MASK Constants
CAN_FILTER Constants

Library Example

HW Connection

CANSPI Library

Library Dependency Tree
External dependencies of CANSPI Library
Library Routines
CANSPISetOperationMode
CANSPIGetOperationMode
CANSPIInit
CANSPISetBaudRate
CANSPISetMask
CANSPISetFilter

CANSPIRead

CANSPIWrite

CANSPI Constants
CANSPI_OP_MODE Constants

240
240
241
242

242
243
243
244
245
245
246
246

248
248
249
249
250
251
252
253
254
255
256
256
256
257
258
258
259
259
262

263
263
263
264
264
265
265
267
268
269
270
271
271
271

1

mikoBasic PRO for dsPIC30/33 and PIC24

CANSPI_TX MSG_FLAGS Constants
CANSPI_RX _MSG_FLAGS Constants

CANSPI_MASK Constants

CANSPI_FILTER Constants

Library Example

HW Connection
Compact Flash Library

Library Dependency Tree

External dependencies of Compact Flash Library

Library Routines
Cf_Init

Cf _Detect
Cf_Enable
Cf_Disable
Cf_Read_Init
Cf_Read_Byte
Cf_Write_Init
Cf_Write_Byte
Cf_Read_Sector
Cf_Write_Sector
Cf_Fat_Init
Cf_Fat_QuickFormat
Cf_Fat_Assign
Cf_Fat_Reset
Cf_Fat Read
Cf_Fat_Rewrite
Cf_Fat_Append
Cf_Fat_Delete
Cf_Fat_Write
Cf_Fat_Set File Date
Cf_Fat_Get_File_Date

Cf_Fat_Get_File_Date_Modified

Cf_Fat_Get_File_Size
Cf_Fat_Get_Swap_File
Library Example

HW Connection

ECAN Library
Library Routines
ECANxDmaChannellnit
ECANxSetOperationMode
ECANxGetOperationMode
ECANXxInitialize
ECANxSelectTxBuffers
ECANXxFilterDisable
ECANXxFilterEnable
ECANxSetBufferSize

273
273
274
274
275
278

279
279
280
281
282
283
283
283
284
284
284
285
285
285
286
286
287
288
288
289
289
289
290
290
291
291
292
292
294
299

300
300
301
301
302
303
304
304
305
305

12

mikroBasic PRO for dsPIC30/33 and PIC24

ECANxSetBaudRate 306
ECANxSetMask 307
ECANXxSetFilter 308
ECANxRead 309
ECANxWrite 310
ECAN Constants 311
ECAN_OP_MODE Constants 311
ECAN_CONFIG_FLAGS Constants 311
ECAN_TX MSG_FLAGS Constants 312
ECAN_RX MSG_FLAGS Constants 312
ECAN_MASK Constants 313
ECAN_FILTER Constants 313
ECAN_RX BUFFER Constants 314
Library Example 315
HW Connection 319
EEPROM Library 319
Library Routines 319
EEPROM_Erase 320
EEPROM_Erase_ Block 320
EEPROM_Read 320
EEPROM_Write 321
EEPROM_Write_Block 321
Library Example 321
Epson S1D13700 Graphic Lcd Library 323
External dependencies of the Epson S1D13700 Graphic Lcd Library 323
Library Routines 324
S1D13700_Init 325
S1D13700_Write_ Command 326
S1D13700_Write_Parameter 327
S1D13700_Read_Parameter 327
S1D13700_Fill 327
S1D13700_GrfFill 328
S1D13700_TxtFill 328
S1D13700_Display_GrlLayer 328
S1D13700_Display_TxtLayer 329
S1D13700_Set_Cursor 329
S1D13700_Display_Cursor 330
S1D13700_Write_Char 330
S1D13700_Write_Text 331
S1D13700_Dot 331
S1D13700_Line 332
S1D13700_H_Line 332
S1D13700_V_Line 333
S1D13700_Rectangle 333
S1D13700_Box 334
S1D13700_Rectangle Round_Edges 334

13 MikroElektronika

mikoBasic PRO for dsPIC30/33 and PIC24

S1D13700_Rectangle_Round_Edges_Fill 335
S1D13700_Circle 335
S1D13700_Circle_Fill 336
S1D13700_Image 336
S1D13700_Partiallmage 337
Flash Memory Library 338
dsPIC30: 338
PI1C24 and dsPIC33: 338
24F04KA201 and 24F16KA102 Family Specifics: 339
Library Routines 339
dsPIC30 Functions 339
PI1C24 and dsPIC33 Functions 339
dsPIC30 Functions 340
FLASH_Erase32 340
FLASH_Write_Block 340
FLASH_Write_ Compact 341
FLASH_Write_Init 341
FLASH_Write_Loadlatch4 342
FLASH_Write_Loadlatch4 Compact 343
FLASH_Write_DoWrite 344
FLASH_Read4 344
FLASH_Read4 Compact 345
PI1C24 and dsPIC33 Functions 345
FLASH_Erase 345
FLASH_Write 346
FLASH_Write_Compact 346
FLASH_Read 347
FLASH_Read_Compact 347
Library Example 347
Graphic Lcd Library 349
Library Dependency Tree 349
External dependencies of Graphic Lcd Library 350
Library Routines 351
Gled_Init 351
Glcd_Set_Side 353
Glcd_Set_X 353
Glcd_Set Page 353
Glcd_Read_Data 354
Glcd_Write_Data 354
Gled_Fill 355
Glcd_Dot 355
Glcd_Line 355
Gled_V_Line 356
Glcd_H_Line 356
Glcd_Rectangle 357
Glcd_Rectangle_Round Edges 357

MikroElektronika 1

mikroBasic PRO for dsPIC30/33 and PIC24

Glcd_Rectangle Round_Edges_ Fill 358
Glcd_Box 358
Glcd_Circle 359
Glcd_Circle_Fill 359
Glcd_Set Font 360
Glcd_Write_Char 361
Glcd_Write_Text 361
Glcd_Image 362
Glcd_Partiallmage 362
Library Example 363
HW Connection 365
I2C Library 366
Library Routines 366
[12Cx_Init 366
I2Cx_Start 367
I2Cx_Restart 367
12Cx_Is_Idle 368
I2Cx_Read 368
12Cx_Write 369
12Cx_Stop 369
Library Example 370
HW Connection 370
Keypad Library 371
External dependencies of Keypad Library 371
Library Routines 371
Keypad_ Init 371
Keypad_Key Press 372
Keypad_Key Click 372
Library Example 373
HW Connection 374
Lcd Library 375
Library Dependency Tree 375
External dependencies of Lcd Library 375
Library Routines 375
Led_Init 376
Lcd_Out 377
Lcd Out Cp 377
Lced_Chr 377
Lcd Chr_Cp 378
Lcd_Cmd 378
Available Lcd Commands 378
Library Example 379
Manchester Code Library 381
External dependencies of Manchester Code Library 381
Library Routines 382
Man_Receive_|Init 382

15 MikroElektronika

mikoBasic PRO for dsPIC30/33 and PIC24

Man_Receive 383
Man_Send_Init 383
Man_Send 384
Man_Synchro 384
Man_Break 385
Library Example 386
Connection Example 388
Multi Media Card Library 389
Secure Digital Card 389
Secure Digital High Capacity Card 389
Library Dependency Tree 390
External dependencies of MMC Library 390
Library Routines 390
Mmc_Init 391
Mmc_Read_Sector 392
Mmc_Write_Sector 392
Mmc_Read_Cid 393
Mmc_Read_Csd 393
Mmc_Fat_Init 394
Mmc_Fat_QuickFormat 395
Mmc_Fat_Assign 396
Mmc_Fat_Reset 397
Mmc_Fat_Read 397
Mmc_Fat_Rewrite 398
Mmc_Fat_Append 398
Mmc_Fat_Delete 398
Mmc_Fat_Write 399
Mmc_Fat_Set File Date 399
Mmc_Fat_Get_File Date 400
Mmc_Fat_Get_File_Date_Modified 401
Mmc_Fat_Get_File_Size 401
Mmc_Fat_Get Swap_File 402
Library Example 403
HW Connection 407
OneWire Library 408
Library Routines 408
Ow_Reset 408
Ow_Read 409
Ow_Write 409
Library Example 410
HW Connection 412
Peripheral Pin Select Library 413
Library Routines 413
Unlock_IOLOCK 413
Lock_IOLOCK 413
PPS_Mapping 414

MikroElektronika 16

mikroBasic PRO for dsPIC30/33 and PIC24

Direction Parameters
Input Functions
Output Functions

Port Expander Library
Library Dependency Tree
External dependencies of Port Expander Library
Library Routines
Expander_Init
Expander_Init_Advanced
Expander_Read_Byte
Expander_Write_Byte
Expander_Read_PortA
Expander_Read_PortB
Expander_Read_PortAB
Expander_Write_PortA
Expander_Write_PortB
Expander_Write_PortAB
Expander_Set_DirectionPortA
Expander_Set_DirectionPortB
Expander_Set_DirectionPortAB
Expander_Set PullUpsPortA
Expander_Set PullUpsPortB
Expander_Set PullUpsPortAB
HW Connection

PS/2 Library
External dependencies of PS/2 Library
Library Routines
Ps2_Config
Ps2_Key Read
Special Function Keys
Library Example
HW Connection

PWM Library
Library Routines
PWM_Init
PWM_Set Duty
PWM_Start
PWM_Stop
Library Example
HW Connection

PWM Motor Control Library
Library Routines
PWMx_Mc_Init
PWMx_Mc_Set Duty
PWMx_Mc_Start
PWMx_Mc_Stop

414
414
415

417
417
417
417
418
419
419
420
420
421
421
422
422
423
423
424
424
424
425
425
427

428
428
428
429
429
430
431
432

432
432
433
433
434
434
434
436

436
436
437
438
438
439

11

mikoBasic PRO for dsPIC30/33 and PIC24

HW Connection

RS-485 Library
Library Dependency Tree
External dependencies of RS-485 Library
Library Routines
RS485Master_Init
RS485Master_Receive
RS485Master_Send
RS485Slave_Init
RS485Slave Receive
RS485Slave_Send
Library Example
HW Connection
Message format and CRC calculations

Software I12C Library
External dependencies of Software I>C Library
Library Routines
Soft_12C_Init
Soft_12C_Start
Soft 12C_Read
Soft_12C_Write
Soft_12C_Stop
Soft_12C_Break
Library Example

Software SPI Library
External dependencies of Software SPI Library
Library Routines
Soft_SPI_Init
Soft_ SPI_Read
Soft_ SPI_Write
Library Example

Software UART Library
Library Routines
Soft_UART_Init
Soft UART_Read
Soft UART_Write
Soft UART_Break
Library Example

Sound Library
Library Routines
Sound_ Init
Sound_Play
HW Connection

SPI Library

Library Routines
SPIx_Init

440

440
441
441
441
441
442
442
443
444
444
445
448
449

450
450
450
451
451
452
452
452
453
454

456
456
456
457
457
458
458

460
460
460
461
461
462
463

464
464
464
464
467

468
468
469

18

mikroBasic PRO for dsPIC30/33 and PIC24

SPIx_Init_Advanced 470
SPIx_Read 472
SPIx_Write 472
SPI_Set_Active 473
Library Example 473
HW Connection 474
SPI Ethernet Library 475
Library Dependency Tree 475
External dependencies of SPI Ethernet Library 476
Library Routines 476
SPI_Ethernet_Init 477
SPI_Ethernet_Enable 479
SPI_Ethernet_Disable 480
SPI_Ethernet_doPacket 481
SPI_Ethernet_putByte 481
SPI_Ethernet_putBytes 482
SPI_Ethernet_putConstBytes 482
SPI_Ethernet_putString 483
SPI_Ethernet_putConstString 483
SPI_Ethernet_getByte 483
SPI_Ethernet_getBytes 484
SPI_Ethernet_UserTCP 484
SPI_Ethernet_UserUDP 485
SPI_Ethernet_setUserHandlers 485
SPI_Ethernet_getlpAddress 486
SPI_Ethernet_getGwlpAddress 486
SPI_Ethernet_getDnslpAddress 487
SPI_Ethernet_getlpMask 487
SPI_Ethernet_confNetwork 488
SPI_Ethernet_arpResolve 489
SPI_Ethernet_sendUDP 489
SPI_Ethernet_dnsResolve 490
SPI_Ethernet_initDHCP 491
SPI_Ethernet_ doDHCPLeaseTime 491
SPI_Ethernet_renewDHCP 492
Library Example 492
HW Connection 499
SPI Ethernet ENC24J600 Library 500
Library Dependency Tree 500
External dependencies of SPI Ethernet ENC24J600 Library 501
Library Routines 502
SPI_Ethernet_24j600_Init 503
SPI_Ethernet_24j600_Enable 505
SPI_Ethernet_24j600_Disable 506
SPI_Ethernet _24j600_doPacket 507
SPI_Ethernet_24j600_ putByte 507

19 MikroElektronika

mikoBasic PRO for dsPIC30/33 and PIC24

SPI_Ethernet _24j600_putBytes 508
SPI_Ethernet_24j600_putConstBytes 508
SPI_Ethernet _24j600_putString 509
SPI_Ethernet_24j600_putConstString 509
SPI_Ethernet _24j600_getByte 509
SPI_Ethernet _24j600_getBytes 510
SPI_Ethernet _24j600_UserTCP 510
SPI_Ethernet 24j600_UserUDP 511
SPI_Ethernet _24j600_setUserHandlers 511
SPI_Ethernet_24j600_getlpAddress 512
SPI_Ethernet _24j600_getGwlpAddress 512
SPI_Ethernet 24j600_getDnslpAddress 512
SPI_Ethernet_24j600_getlpMask 513
SPI_Ethernet_24j600_confNetwork 513
SPI_Ethernet _24j600_arpResolve 514
SPI_Ethernet_24j600_sendUDP 514
SPI_Ethernet _24j600_dnsResolve 515
SPI_Ethernet_24j600_initDHCP 516
SPI_Ethernet_24j600_doDHCPLeaseTime 516
SPI_Ethernet _24j600_renewDHCP 517
Library Example 518
SPI Graphic Lcd Library 519
Library Dependency Tree 519
External dependencies of SPI Lcd Library 519
Library Routines 519
SPI_Glcd_Init 520
SPI_Glcd_Set_Side 521
SPI_Glcd_Set Page 521
SPI_Glcd_Set X 521
SPI_Glcd_Read_Data 522
SPI_Glcd_Write_Data 522
SPI_Glcd_Fill 522
SPI_Glcd_Dot 523
SPI_Glcd_Line 523
SPI_Glcd_V _Line 524
SPI_Glcd_H_Line 524
SPI_Glcd_Rectangle 525
SPI_Glcd_Rectangle Round_Edges 525
SPI_Glcd_Rectangle Round_Edges Fill 526
SPI_Glcd_Box 526
SPI_Glcd_Circle 527
SPI_Glcd_Circle_Flli 527
SPI_Glcd_Set Font 528
SPI_Glcd_Write_Char 529
SPI_Glcd_Write_Text 529
SPI_Glcd_Image 530

MikroElektronika 20

mikroBasic PRO for dsPIC30/33 and PIC24

SPI_Glcd_Partiallmage 530
Library Example 531
HW Connection 533
SPI Lcd Library 534
Library Dependency Tree 534
External dependencies of SPI Lcd Library 534
Library Routines 534
SPI_Lcd_Config 535
SPI_Lcd_Out 535
SPI_Lcd_Out_Cp 536
SPI_Lcd_Chr 536
SPI_Lcd_Chr_Cp 536
SPI_Lcd_Cmd 537
Available SPI Lcd Commands 537
Library Example 538
Default Pin Configuration 538
SPI Lcd8 (8-bit interface) Library 540
Library Dependency Tree 540
External dependencies of SPI Lcd Library 540
Library Routines 540
SPI_Lcd8 Config 541
SPI_Lcd8 Out 541
SPI_Lcd8 Out_Cp 542
SPI_Lcd8 Chr 542
SPI_Lcd8 Chr_Cp 542
SPI_Lcd8 Cmd 543
Available SPI Lcd8 Commands 543
Library Example 544
SPI T6963C Graphic Lcd Library 546
Library Dependency Tree 546
External dependencies of SPI T6963C Graphic Lcd Library 546
Library Routines 547
SPI_T6963C_config 548
SPI_T6963C_writeData 549
SPI_T6963C_writeCommand 549
SPI_T6963C_setPtr 550
SPI_T6963C_waitReady 550
SPI_T6963C _fill 550
SPI_T6963C_dot 551
SPI_T6963C_write_char 551
SPI_T6963C_write_text 552
SPI_T6963C_line 552
SPI_T6963C rectangle 553
SPI_T6963C rectangle_round_edges 553
SPI_T6963C _rectangle_round_edges_fill 554
SPI_T6963C_box 554

2

mikoBasic PRO for dsPIC30/33 and PIC24

SPI_T6963C_circle 555
SPI_T6963C_circle_fill 555
SPI_T6963C_image 555
SPI_T6963C_Partiallmage 556
SPI_T6963C_sprite 556
SPI_T6963C_set_cursor 557
SPI_T6963C_clearBit 557
SPI_T6963C_setBit 557
SPI_T6963C_negBit 558
SPI_T6963C_displayGrPanel 558
SPI1_T6963C_displayTxtPanel 558
SPI_T6963C_setGrPanel 559
SPI_T6963C_setTxtPanel 559
SPI_T6963C_panelFill 559
SPI_T6963C_grFill 560
SPI_T6963C_txtFill 560
SPI_T6963C_cursor_height 560
SPI_T6963C_graphics 561
SPI_T6963C_text 561
SPI_T6963C_cursor 561
SPI_T6963C_cursor_blink 562
Library Example 562
HW Connection 566
T6963C Graphic Lcd Library 567
Library Dependency Tree 567
External dependencies of T6963C Graphic Lcd Library 568
Library Routines 569
T6963C_init 570
T6963C_writeData 571
T6963C_writeCommand 572
T6963C_setPtr 572
T6963C_waitReady 572
T6963C_fill 573
T6963C_dot 573
T6963C_write_char 574
T6963C_write_text 575
T6963C_line 575
T6963C_rectangle 576
T6963C_rectangle round_edges 576
T6963C_rectangle round_edges _fill 577
T6963C_box 577
T6963C_circle 577
T6963C_circle_fill 578
T6963C _image 578
T6963C_Partiallmage 579
T6963C_sprite 579
T6963C_set_cursor 580

22

mikroBasic PRO for dsPIC30/33 and PIC24

T6963C_displayGrPanel 580
T6963C_displayTxtPanel 580
T6963C_setGrPanel 581
T6963C_setTxtPanel 581
T6963C_panelFill 581
T6963C_grFill 582
T6963C_txtFill 582
T6963C_cursor_height 582
T6963C_graphics 583
T6963C_text 583
T6963C_cursor 583
T6963C_cursor_blink 584
Library Example 584
HW Connection 588
TFT Library 589
External dependencies of TFT Library 589
Library Routines 590
TFT_Init 591
TFT_Set_Index 592
TFT_Write_Command 592
TFT_Write_Data 592
TFT_Set_Active 593
TFT_Set Font 594
TFT_Write_Char 595
TFT_Write_Text 595
TFT_Fill_Screen 596
TFT_Dot 597
TFT_Set Pen 598
TFT_Set_Brush 599
TFT_Line 601
TFT_H_Line 602
TFT_V_Line 602
TFT_Rectangle 602
TFT_Rectangle_Round_Edges 603
TFT_Circle 603
TFT_Image 603
TFT_Partial_Image 604
TFT_Image_Jpeg 604
TFT_RGBToColor16bit 605
TFT_Color16bitToRGB 605
HW Connection 606
Touch Panel Library 607
Library Dependency Tree 607
External dependencies of Touch Panel Library 607
Library Routines 607
TP_Init 608

23 MikroElektronika

mikoBasic PRO for dsPIC30/33 and PIC24

TP_Set ADC_Threshold
TP_Press_Detect
TP_Get_Coordinates
TP_Calibrate_Bottom_Left
TP_Calibrate_Upper_Right
TP_Get_Calibration_Consts
TP_Set Calibration_Consts
Library Example

Touch Panel TFT Library
Library Dependency Tree
External dependencies of Touch Panel TFT Library
Library Routines
TP_TFT_lInit
TP_TFT_Set ADC_Threshold
TP_TFT_Press_Detect
TP_TFT_Get_Coordinates
TP_TFT_Calibrate_Min
TP_TFT_Calibrate_Max
TP_TFT_Get_Calibration_Consts
TP_TFT_Set_Calibration_Consts
HW Connection

UART Library
Library Routines
UARTx_Init
UARTx_Init_Advanced
UARTx_Data_Ready
UARTx_Tx_Idle
UARTx_Read
UARTx_Read_Text
UARTx_Write
UARTx_Write_Text
UART_Set_Active
Library Example
HW Connection

USB Library
USB HID Class
Library Routines
HID_Enable
HID_Read
HID_Write
HID_Disable
USB_ Interrupt_Proc
USB_Polling_Proc
Gen_Enable
Gen_Read
Gen_Write

608
609
609
610
610
610
611
611

615
615
615
615
616
616
617
618
618
618
619
619
620

621
621
622
623
624
625
625
626
627
627
628
629
630

631
631
631
632
632
632
633
633
633
634
634
634

24

mikroBasic PRO for dsPIC30/33 and PIC24

Library Example 635
HW Connection 635
Digital Signal Processing Libraries 636
Digital Signal Processing Libraries 636
FIR Filter Library 637
Library Routines 637
FIR_Radix 637
lIR Filter Library 638
Library Routines 638
IIR_Radix 638
FFT Library 639
Library Dependency Tree 639
FFT 639
Twiddle Factors: 640
TwiddleCoeff_64 640
TwiddleCoeff_128 640
TwiddleCoeff_256 640
TwiddleCoeff_512 641
Bit Reverse Complex Library 643
Library Routines 643
BitReverseComplex 643
Vectors Library 644
Library Routines 644
Vector_Set 644
Vector_Power 645
Vector_Subtract 645
Vector_Scale 646
Vector_Negate 646
Vector_Multiply 647
Vector_Min 647
Vector_Max 648
Vector_Dot 648
Vector_Correlate 649
Vector_Convolve 650
Vector_Add 650
Matrices Library 651
Library Routines 651
Matrix_Transpose 651
Matrix_Subtract 652
Matrix_Scale 652
Matrix_Multiply 653
Matrix_Add 654
Miscellaneous Libraries 655
Button Library 655
Library Routines 655

25 MikroElektronika

mikoBasic PRO for dsPIC30/33 and PIC24

Button 656
C Type Library 657
Library Functions 657
isalnum 657
isalpha 657
iscntrl 657
isdigit 658
isgraph 658
islower 658
ispunct 658
isspace 658
isupper 659
isxdigit 659
toupper 659
tolower 659
Conversions Library 660
Library Dependency Tree 660
Library Routines 660
ByteToStr 661
ShortToStr 661
WordToStr 662
WordToStrWithZeros 662
IntToStr 663
LongintToStr 663
LongWordToStr 664
FloatToStr 664
WordToStrWithZeros 665
IntToStrWithZeros 665
LongWordToStrWithZeros 666
LongIntToStrWithZeros 666
ByteToHex 667
ShortToHex 667
WordToHex 668
IntToHex 668
LongWordToHex 669
LongIntToHex 669
StrTolnt 670
StrToWord 670
Bcd2Dec 670
Dec2Bcd 671
Bcd2Dec16 671
Dec2Bcd16 671
Setjmp Library 672
Library Routines 672
Setjmp 672
Longjmp 672

MikroElektronika 26

mikroBasic PRO for dsPIC30/33 and PIC24

Library Example 673
String Library 674
Library Functions 674
memchr 674
memcmp 675
memcmp 675
memcpy 675
memmove 676
memset 676
strcat 676
strcat2 677
strchr 677
strcmp 677
strcpy 678
strlen 678
strncat 678
strncpy 678
strspn 679
strncmp 679
strstr 679
strcspn 680
strpbrk 680
strrchr 680
Itrim 680
rtrim 681
strappendpre 681
strappendsuf 681
length 681
Time Library 682
Library Routines 682
Time_dateToEpoch 682
Time_epochToDate 683
Time_dateDiff 683
Library Example 684
TimeStruct type definition 685
Trigon Library 686
Library Routines 686
acos 686
asin 686
atan 687
atan2 687
ceil 687
cos 687
cosh 687
eval_poly 687
exp 688

927 MikroElektronika

mikoBasic PRO for dsPIC30/33 and PIC24

fabs
floor
frexp
log
Idexp
log10
modf
pow
sin
sinh
sqrt
tan
tanh
Trigonometry Library
Library Routines
SinE3
cosE3
CHAPTER 10
Tutorials
Managing Project
Projects
New Project
New Project Wizard Steps
New Project
New Project Wizard Steps
Customizing Projects
Managing Project Group
Add/Remove Files from Project
Project Level Defines:
Add/Remove Files from Project
Project Level Defines:
Source Files
Managing Source Files
Creating new source file
Opening an existing file
Printing an open file
Saving file
Saving file under a different name
Closing file
Search Paths
Paths for Source Files (.mbas)
Edit Project
Search Paths
Paths for Source Files (.mbas)

Clean Project Folder

688
688
688
688
688
689
689
689
689
689
689
690
690

691
691
691
691

692
692

692
692

693
693

696
696

700
700
700
701

702
703

704
704
704
704
704
704
704
705
705
706

706
707
707

708

28

mikroBasic PRO for dsPIC30/33 and PIC24

Compilation 709
Output Files 709
Assembly View 709

Creating New Library 710
Multiple Library Versions 710

Using Microchip MPLAB® IDE with mikroElektronika compilers 711
Debugging Your Code 71

Using MPLAB® ICD 2 Debugger 711

Using MPLAB® Simulator 718

Frequently Asked Questions 723
Can | use your compilers and programmer on Windows Vista (Windows 7) ? 723
| am getting “Access is denied” error in Vista, how to solve this problem ? 723
What are differences between mikroC PRO, mikroPascal PRO and mikroBasic PRO compilers ?
Why do they have different prices ? 723
Why do your PIC compilers don’t support 12F508 and some similar chips ? 723
What are limitations of demo versions of mikroElektronika’s compilers ? 723
Why do [still get demo limit error when | purchased and installed license key ? 723
I have bought license for the older version, do | have to pay license for the new version of the com-
piler ? 724
Do your compilers work on Windows Vista (Windows 7) ? 724
What does this function/procedure/routine do ? 724
| try to compile one of the provided examples and nothing happens, what is the problem? 724
Can | get your library sources ? | need to provide all sources with my project. 724
Can | use code | developed in your compilers in commercial purposes ? Are there some limitations
? 724
Why does an example provided with your compilers doesn’t work ? 724
Your example works if | use the same MCU you did, but how to make it work for another MCU ?724
| need this project finished, can you help me ? 725

Do you have some discount on your compilers/development systems for students/professors ? 725
| have a question about your compilers which is not listed here. Where can | find an answer ? 725

29

mikoBasic PRO for dsPIC30/33 and PIC24

CHAPTER 1

INTRODUCTION

mikroBasic PRO for dsPIC30/33 and PIC24 is a powerful, feature-rich development tool for dsPIC30/33 and PIC24
microcontrollers. It is designed to provide the programmer with the easiest possible solution to developing applications
for embedded systems, without compromising performance or control.

-]
il I PR RS P PR LA, T R MG LE P T N N Y R
S b e R e e - R, S A b
B0 7 i L] s e v L
T * Wi sms shang th merisg apeed dnee = =R TNLE L)
—— . O = - [rr— - a
i e il - .“:_’,"_h_ =
= i * CrFags AB pibe b i gEled £ g B o e
w [o i e '
MR T e e ey
aml = S A R []
w [mmce et -
AmA = Crmrgint § O pruimae -
|- - =
R i i W s
Rd_Tm L CRn i . -
[| LCR,O—., DT} e ma T
ROE 01,4, AR1 :
R S, AR . F B I T T R W
o L 1 "__I omi B [T
e B Lo e

L ST T
LIER T

" mALEE N
A iom dm
Rl St LB NI, BRIy
rvn_bvdng i
i

ik TETE
[T

i!]![!EIHE]!

RERRERRRERRE

B
'CCCE

mikroBasic PRO for dsPIC30/33 and PIC24 IDE

mikroBasic PRO for dsPIC30/33 and PIC24

Introduction to mikroBasic PRO for dsPIC30/33 and PIC24

dsPIC30/33 and PIC24 and mikroBasic PRO for dsPIC30/33 and PIC24 fit together well: dsPIC is designed as a PIC
with digital signal processing capabilities. These are Microchip’s first inherent 16-bit (data) microcontrollers. They build
on the PIC’s existing strengths by offering hardware MAC (multiply-accumulate), barrel shifting, bit reversal, (16x16)-bit
multiplication and other digital signal processing operations. Having a wide range of application and being also prized
for efficiency, the dsPIC30/33 and PIC24 MCUs are a natural choice for developing embedded systems. mikroBasic
PRO for dsPIC30/33 and PIC24 provides a successful match featuring highly advanced IDE, broad set of hardware
libraries, comprehensive documentation, and plenty of ready-to-run examples.

Features
mikroBasic PRO for dsPIC30/33 and PIC24 allows you to quickly develop and deploy complex applications:

- Write your source code using the built-in Code Editor (Code and Parameter Assistants, Code Folding,
Syntax Highlighting, Auto Correct, Code Templates, and more.)

- Use included mikroBasic PRO for dsPIC30/33 and PIC24 libraries to dramatically speed up the
development: data acquisition, memory, displays, conversions, communication etc.

- Monitor your program structure, variables, and functions in the Code Explorer.

- Generate commented, human-readable assembly, and standard HEX compatible with all programmers.

- Use the integrated mikrolCD (In-Circuit Debugger) Real-Time debugging tool to monitor program execution
on the hardware level.

- Inspect program flow and debug executable logic with the integrated Software Simulator.

- Generate COFF(Common Object File Format) file for software and hardware debugging under Microchip’s
MPLAB software.

- Use Single Static Assingment optimization to shrink your code to even smaller size.

- Get detailed reports and graphs: RAM and ROM map, code statistics, assembly listing, calling tree, and
more.

- Active Comments enable you to make your comments alive and interactive.

- mikroBasic PRO for dsPIC30/33 and PIC24 provides plenty of examples to expand, develop, and use as
building bricks in your projects. Copy them entirely if you deem fit — that's why we included them with the
compiler.

Where to Start

- In case that you're a beginner in programming the dsPIC30/33 and PIC24 microcontrollers, read carefully
the dsPIC Specifics chapter. It might give you some useful information on the dsPIC30/33 and PIC24
constraints, code portability, and good programming practices.

- If you are experienced in Basic programming, you will probably want to consult the mikroBasic PRO for
dsPIC30/33 and PIC24 Specifics first. For language issues, you can always refer to the comprehensive
Language Reference. A complete list of included libraries is available in the mikroBasic PRO for
dsPIC30/33 and PIC24 Libraries.

- If you are not very experienced in Basic programming, don’t panic! mikroBasic PRO for dsPIC30/33
and PIC24 provides plenty of examples making it easy for you to go quickly through it . We suggest you
to consult Projects and Source Files first, and then start browsing the examples that you're the most
interested in.

Copyright (c) 2002-2010 mikroElektronika. All rights reserved.
What do you think about this topic ? Send us feedback!

31 MikroElektronika

mikoBasic PRO for dsPIC30/33 and PIC24

What’s new in mikroBasic PRO for dsPIC30/33 and PIC24

IDE build 4.60
Command line build 4.60

New features and enhancements in the following areas will boost your productivity by helping you complete many tasks
more easily and in less time.

For a complete version history of mikroBasic PRO for dsPIC30/33 and PIC24 2010, visit the following link:
http://www.mikroe.com/download/eng/documents/compilers/mikrobasic/pro/dspic/version_history

- Compiler Changes
- IDE Changes

Compiler Changes

Fixed:
- Optimization issues in specific cases when destination variable is in Rx space.
IDE Changes
Fixed:
- Compiler version is not visible in caption if no projects are open.
- Parameter assistant ignores commas when switching to another parameter.
- Occasional lost of configuration flags when swithing between projets.
- Improper display of RAM memory usage in statistics.
Improved:

- Communication to programmer concerning supported chips.
- License Key Request form.

MikroElektronika 32

mikroBasic PRO for dsPIC30/33 and PIC24

Software License Agreement
mikroElektronika Associates License Statement and Limited Warranty

IMPORTANT - READ CAREFULLY

This license statement and limited warranty constitute a legal agreement (“License Agreement”) between you (either as
an individual or a single entity) and mikroElektronika (“mikroElektronika Associates”) for software product (“Software”)
identified above, including any software, media, and accompanying on-line or printed documentation.

BY INSTALLING, COPYING, OR OTHERWISE USING SOFTWARE, YOU AGREE TO BE BOUND BY ALL TERMS
AND CONDITIONS OF THE LICENSE AGREEMENT.

Upon your acceptance of the terms and conditions of the License Agreement, mikroElektronika Associates grants you
the right to use Software in a way provided below.

This Software is owned by mikroElektronika Associates and is protected by copyright law and international copyright
treaty. Therefore, you must treat this Software like any other copyright material (e.g., a book).

You may transfer Software and documentation on a permanent basis provided. You retain no copies and the recipient
agrees to the terms of the License Agreement. Except as provided in the License Agreement, you may not transfer,
rent, lease, lend, copy, modify, translate, sublicense, time-share or electronically transmit or receive Software, media
or documentation. You acknowledge that Software in the source code form remains a confidential trade secret of
mikroElektronika Associates and therefore you agree not to modify Software or attempt to reverse engineer, decompile,
or disassemble it, except and only to the extent that such activity is expressly permitted by applicable law notwithstanding
this limitation.

If you have purchased an upgrade version of Software, it constitutes a single product with the mikroElektronika
Associates software that you upgraded. You may use the upgrade version of Software only in accordance with the
License Agreement.

LIMITED WARRANTY

Respectfully excepting the Redistributables, which are provided “as is”, without warranty of any kind, mikroElektronika
Associates warrants that Software, once updated and properly used, will perform substantially in accordance with the
accompanying documentation, and Software media will be free from defects in materials and workmanship, for a period
of ninety (90) days from the date of receipt. Any implied warranties on Software are limited to ninety (90) days.

mikroElektronika Associates’ and its suppliers’ entire liability and your exclusive remedy shall be, at mikroElektronika
Associates’ option, either (a) return of the price paid, or (b) repair or replacement of Software that does not meet
mikroElektronika Associates’ Limited Warranty and which is returned to mikroElektronika Associates with a copy of
your receipt. DO NOT RETURN ANY PRODUCT UNTIL YOU HAVE CALLED MIKROELEKTRONIKA ASSOCIATES
FIRST AND OBTAINED A RETURN AUTHORIZATION NUMBER. This Limited Warranty is void if failure of Software
has resulted from an accident, abuse, or misapplication. Any replacement of Software will be warranted for the rest of
the original warranty period or thirty (30) days, whichever is longer.

TO THE MAXIMUM EXTENT PERMITTED BY APPLICABLE LAW, MIKROELEKTRONIKA ASSOCIATES AND ITS
SUPPLIERS DISCLAIM ALL OTHER WARRANTIES AND CONDITIONS, EITHER EXPRESSED OR IMPLIED,
INCLUDED, BUT NOT LIMITED TO IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FORA PARTICULAR
PURPOSE, TITLE, AND NON-INFRINGEMENT, WITH REGARD TO SOFTWARE, AND THE PROVISION OF OR
FAILURE TO PROVIDE SUPPORT SERVICES.

mikoBasic PRO for dsPIC30/33 and PIC24

IN NO EVENT SHALL MIKROELEKTRONIKA ASSOCIATES OR ITS SUPPLIERS BE LIABLE FOR ANY SPECIAL,
INCIDENTAL, INDIRECT, OR CONSEQUENTIAL DAMAGES WHATSOEVER (INCLUDING, WITHOUT LIMITATION,
DAMAGES FOR LOSS OF BUSINESS PROFITS AND BUSINESS INFORMATION, BUSINESS INTERRUPTION, OR
ANY OTHER PECUNIARY LOSS) ARISING OUT OF THE USE OF OR INABILITY TO USE SOFTWARE PRODUCT
OR THE PROVISION OF OR FAILURE TO PROVIDE SUPPORT SERVICES, EVEN IF MIKROELEKTRONIKA
ASSOCIATESHASBEENADVISED OF THEPOSSIBILITY OF SUCHDAMAGES. INANY CASE, MIKROELEKTRONIKA
ASSOCIATES’ ENTIRE LIABILITY UNDER ANY PROVISION OF THIS LICENSE AGREEMENT SHALL BE LIMITED
TO THE AMOUNT ACTUALLY PAID BY YOU FOR SOFTWARE PRODUCT PROVIDED, HOWEVER, IF YOU HAVE
ENTERED INTOAMIKROELEKTRONIKAASSOCIATES SUPPORT SERVICES AGREEMENT, MIKROELEKTRONIKA
ASSOCIATES’ ENTIRE LIABILITY REGARDING SUPPORT SERVICES SHALL BE GOVERNED BY THE TERMS OF
THAT AGREEMENT.

HIGH RISK ACTIVITIES

Software is not fault-tolerant and is not designed, manufactured or intended for use or resale as on-line control
equipment in hazardous environments requiring fail-safe performance, such as in the operation of nuclear facilities,
aircraft navigation or communication systems, air traffic control, direct life support machines, or weapons systems, in
which the failure of Software could lead directly to death, personal injury, or severe physical or environmental damage
(“High Risk Activities”). mikroElektronika Associates and its suppliers specifically disclaim any expressed or implied
warranty of fitness for High Risk Activities.

GENERAL PROVISIONS

This statement may only be modified in writing signed by you and an authorised officer of mikroElektronika Associates.
If any provision of this statement is found void or unenforceable, the remainder will remain valid and enforceable
according to its terms. If any remedy provided is determined to have failed for its essential purpose, all limitations of
liability and exclusions of damages set forth in the Limited Warranty shall remain in effect.

This statement gives you specific legal rights; you may have others, which vary, from country to country. mikroElektronika
Associates reserves all rights not specifically granted in this statement.

mikroElektronika
Visegradska 1A,
11000 Belgrade,
Europe.

Phone: + 381 11 36 28 830
Fax: +381 11 36 28 831
Web: www.mikroe.com
E-mail: office@mikroe.com

MikroElektronika 34

mikroBasic PRO for dsPIC30/33 and PIC24

Technical Support

The latest software can be downloaded free of charge via Internet (you might want to bookmark the page so you could
check news, patches, and upgrades later on): www.mikroe.com/en/compilers/mikrobasic PRO/dspic/download.htm .

In case you encounter any problem, you are welcome to our support forums at www.mikroe.com/forum/. Here, you may
also find helpful information, hardware tips, and practical code snippets. Your comments and suggestions on future
development of the mikroBasic PRO for dsPIC30/33 and PIC24 are always appreciated — feel free to drop a note or
two on our Wishlist.

In our Knowledge Base www.mikroe.com/en/kb/ you can find the answers to Frequently Asked Questions and solutions
to known problems. If you can not find the solution to your problem in Knowledge Base then report it to Support Desk
www.mikroe.com/en/support/. In this way, we can record and track down bugs more efficiently, which is in our mutual
interest. We respond to every bug report and question in a suitable manner, ever improving our technical support.

How to Register

The latest version of the mikroBasic PRO for dsPIC30/33 and PIC24 is always available for downloading from
our website. It is a fully functional software with the mikrolCD(in-circuit Debugger), all the libraries, examples, and
comprehensive help included.

The only limitation of the free version is that it cannot generate hex output over 2K of program words. Although it might
sound restrictive, this margin allows you to develop practical, working applications with no thinking of demo limit. If you

intend to develop really complex projects in the mikroBasic PRO for dsPIC30/33 and PIC24, then you should consider
the possibility of purchasing the license key.

Who Gets the License Key
Buyers of the mikroBasic PRO for dsPIC30/33 and PIC24 are entitled to the license key. After you have completed the

payment procedure, you have an option of registering your mikroBasic PRO for dsPIC30/33 and PIC24. In this way you
can generate hex output without any limitations.

How to Get License Key
After you have completed the payment procedure, start the program. Select Help » How to Register from the drop-
down menu or click the How To Register Icon & .

You can choose between two registering methods, | work online or | work offline, based on your current internet
connection and click Request license key now button:

mikoBasic PRO for dsPIC30/33 and PIC24

X

Choose registration method

® T work online. Chaose this option if vou are connected ta
Inkernet, You will be directed to a web page which will help you
to send the license key request. This is the Fastest way of
ibtaining the license key, it kakes minutes to get it in your
maibox, Recommended,

() I work offline. Choose this option if you are not connected to
Inkernet, You will be guided to fill in the reqgistration Form which
woul can e-mail when you get online. This is a slower way of
getting the license kew and it is intended for offline computers,

Request license

Cancel
key now

If you choose | work online registering method, following page will be opened in your default browser:

MikroElekironik s e
IKroEleKtronika °

DEVELOPMENT TOOLS | COMPILERS | BOOKS Email: office@mikras com

~-

Home | Development Tools | Compilers | Accessory Boards | Special Offers | Easy Buy | Publications | Support | Projects | Download

Software Activation

In arder to get activation key please fill in required fields. Upon receiving and werifying your request, we will send the license key to the e-mail address you specified in the form.

Product:

Name*: John Smith

Address:
Invoice Ifyou do not specify 2G0 Number or invoice number
then the license key request must be processed
2C0 Mumber: manually which can take longer time.

Email*: | jsmith@example.com

Re-enter email*: jsmithi@example.cam
Compary.
Product 1D:

Comment:

Distributor: = MikroElektranika v

TR Dy
E\ Gr:m:m

Type the two wonds:
progrant [744

Submit

Related Links: Products News Forums Distributors About MikroElektronika Legal Information and Privacy Policy Product Archive Contact Us

Copyright @ 1998-2010, Wik roElektromika, #ll rights reserved, Al trade snd/or services marks mentioned are the property of their respective owners,

mikroBasic PRO for dsPIC30/33 and PIC24

Fill out the registration form, select your distributor, and click the Submit button.

If you choose | work offline registering method, following window will be opened:

|E| How: To Register

Step 1. Fill in the form below. Please, make sure vou fill in all required fields.

step 2. Malke sure that yvou provided a valid email address in the "EMAIL" edit box. This email will be used for
sending vou the activation key,

Step 3. Make sure you select a correct distributor which will rmake the reqistration process faster, If vour
distributor is not on the list then select "Other" and type in distributor's email address in the box below.

Step 4. Press the SEND button to send key request. & default email client will open with ready-to-send message.
Mote: If email client does not open, you may copy text of the message and paste it manually into a new email
message before sending it to your distributar's email.

MNAME* Filip Jankovic
ADDRESS Enter your address
INVOICZE Enter invoice number if available in the form Asaa8/BE

| 200 Murnber Enter 2Checkout Order Murnber iF available (10 digits)
[E-mMan* filip@mikroe. com
[EmMan* filipi@mikroe. com

COMPARNY Enter company name

PRODUCT I 3F47-546774-TROAT3-69530

COMMEMTS: Enter comments on your arder

DISTRIBUTOR* || rikrcElektronika key@mikroe,com b

* Required fields
I have made the payment and I wish ko request activation key For mikroPascal For dsPIC

Name:
Filip Jankavic
Address:

|Invoice number:

22 copy to clipboard [senp Cancel

Fill out the registration form, select your distributor, and click the Submit button.

This will start your e-mail client with message ready for sending. Review the information you have entered, and add the
comment if you deem it necessary. Please, do not modify the subject line.

Upon receiving and verifying your request, we will send the license key to the e-mail address you specified in the
form.

After Receving the License Key
The license key comes as a small autoextracting file — just start it anywhere on your computer in order to activate

your copy of compiler and remove the demo limit. You do not need to restart your computer or install any additional
components. Also, there is no need to run mikroBasic PRO for dsPIC30/33 and PIC24 at the time of activation.

37 MikroElektronika

mikoBasic PRO for dsPIC30/33 and PIC24

Important:

- The license key is valid until you format your hard disk. In case you need to format the hard disk,
you should request a new activation key.

- Please keep the activation program in a safe place. Every time you upgrade the compiler
you should start this program again in order to reactivate the license.

ﬂﬂﬂﬂﬂﬂﬂﬂﬂﬂﬂﬂﬂﬂﬂﬂﬂﬂﬂﬂﬂﬂﬂﬂﬂﬂﬂﬂﬂﬂﬂﬂﬂ

CHAPTER 2

mikroBasic PRO for dsPIGC30/33
and PIG24 Environment

mikoBasic PRO for dsPIC30/33 and PIC24

Main Menu Options

Available Main Menu options are:

File

7|

Edit
Wiew |
Project |

Build |

Ru

i

Run
Tools
Help

d

Related topics: Keyboard shortcuts, Toolbars

MikroElektronika 40

mikroBasic PRO for dsPIC30/33 and PIC24

File
File Menu Options

The File menu is the main entry point for manipulation with the source files.

[Mew Unit Chrl+n
2 open CerHo

Recent Files »
H save Chrl+5
I,_—f Save As..
11 Close Ctrl+F4
oL Close Al shift+Ctri+F4
I Print Preview
& Print... Chrl+p
B Exi Ale+x

File Description

||_'1 e Uit Chrb+l | Open a new editor window.
[open a0 | | Open source file for editing or image file for viewing.
| Recert Files >| Reopen recently used file.
EEE ar+s | [Save changes for active editor.
|H."—i‘ Save fs... | Save the active source file with the different name or change the file type.
[cose a4 | | Close active source file.
|:_E Close Al Shift+Ctri+F | Close all opened files.
| Print Preview | Print Preview.
|& Print... Chri+p | Print.
(& e s | | Exit IDE.

Related topics: Keyboard shortcuts, File Toolbar, Managing Source Files

M

mikoBasic PRO for dsPIC30/33 and PIC24

Edit
Edit Menu Options

The Edit Menu contains commands for editing the contents of the current document.

4 Undo Ctr+Z
> Redo Shift+Ctr+2
iy Cut Chrl+x
L@ Copy ChrH+-C
[5) Paste Chrl+y
| Delete

Select Al Ctrl+-a
2 Find... Chrl+F
J<b Find Mext F3
40 Find Pravious Shift+F3
)Q Replace... Ctrl+R
[_| FindinFiles... Ak+F3
+ | Gotoline... Ctrl+G

Advanced 3

Edit Description

|<?a Undo Ctrl+2| Undo last change.

|c:> Redo Shift-+Ctrl+Z | Redo last change.

|e§€; cut Crl+ | Cut selected text to clipboard.

||_.g Copy cri+C | Copy selected text to clipboard.

|3 psste ckv | | Paste text from clipboard.

[pekte | | Delete selected text.

| sekcal ari+a | | Select all text in active editor.

[P End.. cei+r | | Find text in active editor.

|}3 Find biext Fa | Find next occurence of text in active editor.

|33' Find Previous Shift+F3 | Find previous occurence of text in active editor.

|2 meplc=.. culr | | Replace text in active editor.

|C) rndmFies.. ar+rs | | Find text in current file, in all opened files, or in files from desired folder.

[+] sostne.. i | [Go to line to the desired line in active editor.

| Aduanced *| | Advanced Code Editor options

MikroElektronika 42

mikroBasic PRO for dsPIC30/33 and PIC24

Advanced » Description

[t comment shftscl+. [Comment selected code or put single line comment if there is no selection.

[t} wnconment shift+crl+, | Uncomment selected code or remove single line comment if there is no selection.

25 Indent shit+cri+1 | Indent selected code.

| S oudent shitecwi+ | Outdent selected code.

| weercss= cvar | Changes selected text case to lowercase.

|@ ugpercass Cl+Alk+) | Changes selected text case to uppercase.

|4 Ttecsss i+ | Changes selected text case to titlercase.

Find Text

Dialog box for searching the document for the specified text. The search is performed in the direction specified. If the
string is not found a message is displayed.

Find Text @
Search for: -
Options——— Direction
Case sensitivity @ Forward

Whole words only

Search from caret » B
Selected text only
Regular expression QK Cancel

Replace Text

Dialog box for searching for a text string in file and replacing it with another text string.

G Replace Text El@
Search for: mikroElektronika -
Replace with: ik roE -

Optior Diirection
'@ Forward
Whale words anly
Search from caret ! Backward
Selected text only
Beqular expregsion u] S Cancel

13 MikroElektronika

mikoBasic PRO for dsPIC30/33 and PIC24

Find In Files

Dialog box for searching for a text string in current file, all opened files, or in files on a disk.

The string to search for is specified in the Text to find field. If Search in directories option is selected, The files to search
are specified in the Files mask and Path fields.

Grep search (=3
Text to find: -
—Option Where

Case sensitive [Current file

0 all opened files

Uilel 3 el '@ zearch in directories

—Search directory option

Files rask: *.* -
Path: Cih\Program filesy, -
Include subdirectories
oK Cancel
Go To Line

Dialog box that allows the user to specify the line number at which the cursor should be positioned.

Go To Line [

-

Go To Line Nuber =

oK Cancel

Regular expressions option

By checking this box, you will be able to advance your search, through Regular expressions.

Find Text (3]
Search for: unsignedixZ0int -
Options———— ~Direction
Case sensitivity @ Forward

whole words anly

Search from caret ' Backward

Selected text only

oK Cancel

Related topics: Keyboard shortcuts, Edit Toolbar, Advanced Edit Toolbar

MikroElektronika a4

mikroBasic PRO for dsPIC30/33 and PIC24

View

View Menu Options

View Menu contains commands for controlling the on-screen display of the current project.

Debug Windows

Toolbars

i

Bookmarks
Code Explorer
Library Manager
Macro Editor

Messages

Project Manager Shift+Ctrl4+F11

Project Setkings
Ruoukine List
Quick Converter

Wiews Image Prewview

Chrl+L

Chrl+Q

Assembly
Listing

Bl @

Skakistics

[

Windows

45

mikoBasic PRO for dsPIC30/33 and PIC24

View Description
| Debug ‘Windows *» | Show/Hide Software Simulator / mikrolCD (In-Circuit Debugger) debug windows.
| zoohars » | Show/Hide Toolbars.
| Bockmars Show/Hide Bookmarks window.
|’E Code Explorer Show/Hide Code Explorer window.
| Ubrary Manager Show/Hide Library Manager window.
| Marro Edior Show/Hide Macro Editor window.
[messages Show/Hide Messages window.

| Project Manager Shift+CtriF11 | Show/Hide Project Manager window.

| Project Settings Show/Hide Project Settings window.

T Reutine List i+l | Show/Hide Routine List in active editor.

| Quick Converter ar+q | Show/Hide Quick Converter window.

|[E] Yiew Image Preview Show/Hide View Image Preview window.
|.d view Asserbly View Assembly.

| 1] visw Listing View Listing.

|m Wiew Statistics View Statistics.

'@ Wwindows Show Window List window.

The Tools toolbar can easily be customized by adding new tools in Options(F12) window.

Related topics: Keyboard shortcuts, Integrated Tools, Software Simulator

MikroElektronika 46

mikroBasic PRO for dsPIC30/33 and PIC24

Project

Project Menu Options

Project Menu allows the user to easily manipulate current project.

Mew Project... Shift+Cerl+M
Open Project... Shift+Chrl+0
Cpen Project Group...

Recent Projects 3
Save Project

Save Project &s...

Clase Project

Clase Project Group

Add File To Project...

Remove File From Project

Edit Search Paths. ..
Edit Project... Shift+Ctr+E

Clean Project Folder...

Impark Project... Chrl+I

Fle D ® G EBHEETHE EEF

Export Project Chrl+Al+HE

Project

Description

|L'%_~, Mew Project... Shift-+Ctr4N

Open New Project Wizard

|L'% Open Project... Shift+Ctrl+0

Open existing project.

|% Open Project Group..,

Open project group.

| Recent Projects

Open recently used project or project group.

| |§H Save Project

Save current project.

||_=‘(E' Save Projeck As..,

Save active project file with the different name.

| % Close Project

Close active project.

| % Close Project Group

Close project group.

|&‘f Add File To Project. ..

Add file to project.

|&f Remove File From Project

Remove file from project.

| Edit Search Paths...

Edit search paths.

|L% Edit Project... Shift+CErl+E

Edit project settings

|£.]. Clean Project Folder...,

Clean Project Folder

| 37 Irport Project... Chel+1

Import projects created in previous versions of mikroBasic.

||% Expart Project Chrl-+Al+E

Export Project.

Related topics: Keyboard shortcuts, Project Toolbar, Creating New Project, Project Manager, Project Settings

a1

mikoBasic PRO for dsPIC30/33 and PIC24

Build

Build Menu Options

Build Menu allows the user to easily manage building and compiling process.

A Buid Ctrl+F9
Rebuild All Sources Alt+F2
4% Buld AllProjects Shift+F
Stop Build All Chrl+F12

gz Build + Program Chrl+F11

Build Description

[% suid crfFs | Build active project.

| mebudalsoucss at+Fs | Rebuild all sources in acrive project.

|;ﬁ. Build All Projects shift+F9 | Build all projects.

| stopsuidal ar+F12 | Stop building of all projects.

|% Buid + Pragram cri+F11 | Build and program active project.

Related topics: Keyboard shortcuts, Project Toolbar, Creating New Project, Project Manager, Project Settings

MikroElektronika 48

mikroBasic PRO for dsPIC30/33 and PIC24

Run

Run Menu Options

Run Menu is used to debug and test compiled code on a software or harware level.

=i Start Debugger F2
= Stop Debugger Chrl+F2
=}) Run/Pause Debugger F&
g1 Step Into F7
@y Step Ower Fg
(8 Skep Quk Chrl4+Fg
@1 Run Ta Cursar F4
@ Jurnp To Inkerrupk F2
= Toggle Breakpoint FS
[, Clear Breakpoints Shift-+Ckr+FS

Disassembly mode Ale+D

Run Description

||'_%'3; Start Debugger Fg | Start Software Simulator or mikrolCD (In-Circuit Debugger).
|- Stop Debugger ChrkF2 | Stop debugger.
|'§J Run/Pause Debugger Fé | Run/Pause Debugger.
|¢>u Step Into F7 | Step Into.
|d>(] Step Cwer Fg | Step Over.
|m.> Step Ot Ctr+Fa | Step Out.
[RunTo cursor F | [Run To Cursor.
|4* Jump To Interrupt F2 | Jump to interrupt in current project.
| ® Toggle Breakpaink F5 | Toggle Breakpoint.
|qu¢ Clear Breakpoints Shift+Ctrl+FS | Clear Breakpoints.
| Disassembly mods Al+D | Toggle between source and disassembly.

Related topics: Keyboard shortcuts, Debug Toolbar

49

mikoBasic PRO for dsPIC30/33 and PIC24

Tools

Tools Menu Options

Tools Menu contains a number of applications designed to ease the use of compiler and included library routines.

&

mE Programmer

| Package Manager

F11

Aré Active Comment Editor Cbr+Aalk+C
A Al Chart
{4 EEPROM Editor
L Export Code To HTML
u Filter Designer Tool
() GLCD Bitmap Editor
g HID Terminal
JT LD Custom Charactst
-,‘ Seven Segment Editor
UDP Terminal
Bl usapT Terminal ChrH+T
& options Fiz
Tools Description
|53,> mE Programmer Fit | Run mikroElektronika Programmer.
|-‘::* Package Manager Run Package Manager.
|24 active Comment Editor coal+C | Show/Hide Active Comment Editor window.
|_,,l Ascii Chart Run ASCII Chart
L4 EEPROM Editor Run EEPROM Editor
|L,.:I Export Code To HTML Generate HTML code suitable for publishing source code on the web.
|£I Eiter Designer Tool Run Filter Designer Tool.
|() GLco mimap Editar Run Glcd bitmap editor
|§ HID Terminal Run HID Terminal
|JT LCD Custom Characker Run Lcd custom character
|': Seven Segment Editor Run Seven Segment Editor
|85 uop Terminal Run UDP communication terminal
| Bl UsART Terminal CErHT Run USART Terminal
| options Fiz | Open Options window

Related topics: Keyboard shortcuts, Tools Toolbar

mikroBasic PRO for dsPIC30/33 and PIC24

Help

Help Menu Options

@ Help F1

Migration Document

Check For Updates
mikroElektronika Support Forums

mikroElektranika Web Page

.~ How To Register

About

Help

Description

| -@ Help F1

Open Help File.

| Migration Document

Open Code Migration Document.

| Check For Updates

Check if new compiler version is available.

| mikroElektronika Support Forums

Open mikroElektronika Support Forums in a default browser.

| mikroElektronika Wweb Page

Open mikroElektronika Web Page in a default browser.

| o+ How To Register

Information on how to register

| About

Open About window.

Related topics: Keyboard shortcuts, Help Toolbar

a1

mikoBasic PRO for dsPIC30/33 and PIC24

mikroBasic PRO for dsPIC30/33 and PIC24 IDE

IDE Overview

The mikroBasic PRO for dsPIC30/33 and PIC24 is an user-friendly and intuitive environment.

For a detailed information on a certain part of IDE, simply click on it (hovering a mouse cursor above a desired IDE part
will pop-up its name):

BIE N TN SRR RO K N BB NI N - e TR R, | Bamctcl s oG im a
RTINS 0 T RE AR SE AL, W L A PN fam W T |
T Cote Erporer 0 Clictmtas 3 FED|] Projoct Manager C:lProgeam Fiesbrosietronkaind. .21
i . . Belay_ms (500] " You can chamge the morimg speed hare YRR Y Y
- Lend sun = Lt [
ik E o — -
ke 3 B - &
@ . B b -
o0 * - MPCEG = O:ITF * Configure AN pins as digital IO -
LCD_EN 1 Prafect Level Defres it
ey B £xEl & "mikroflektzonikas Srg i
ey . Extd = “EnapdsPICAL® FEPROM Fles E: 3
Lco 0 .0 - oo] 2 Ot Hes &
s ® 60 A = Cexample” B teche
X - B -
X - Led_Tnic () © Znitsalize TeD B i
: . Lod_Cod (_LCB_CLEAR) ¢ Clese displey OherFls -
z . Lod_Crd [_LCB_CURSOR_OFF) * cusser ofr watch oo 20
- * - LD ow(1,6.exed) * Weite text in first Eow 3
= &, 0o of
X . LEb_out 12, 6, Extd) * Meite tart ia sscvad row B LY Lk | e el Eh R
: - Belay_ms (2000} oao B) . Adga
: s Led_Cod [_LCE_CLEAR) * fleac dispiay ot vaiate bom b

fe o LeD owr(1,i,uxed) [p——
» i e o K b, Tad) @
@ Movm, Diley - Felng_ma (500)
A #cimct sattings 23 - ¢ Mowing tewe = Ve ey
“@bere NI+ o s i=0ted * Move text te the right 4 t az ok P
. Lod_Cad{_LED_SHIFT_REGHT) © ¥ P
Mame: PEFE} - . Meve_telay(} w o e
. next + ﬁ £ e
N w nan
90 G while TRUE * Eodiess Joop = = g
O -y [PPO | O for i = 0 te 6 * Nows Cext to the left 7 ti -~ i
g - Loa_Cawt{_LCD_JWIFT, LEFT W Y e
jL] k= Ot
o Do ipe (] ¢ o — o
ot 3 w W o
on 0100 Datng = . for i =0 te d " Move tewt to the right 7 ¢ oo o L Ll
1 Led_Cmd{_LCD_SHIFT_RIGHT)
s Hiovve_belay ()
@ Sohvws O miuaCD - net 3
® 5o | wema 2
< L ¥ | PO 0G0 330us.

(6] e B (o) 10 31%)

A1 e 599

- The Code Editor features adjustable Syntax Highlighting, Code Folding, Code Assistant, Parameters Assistant, Spell
Checker, Auto Correct for common typos and Code Templates (Auto Complete).

- The Code Explorer is at your disposal for easier project management.

- The Project Manager alows multiple project management

- General project settings can be made in the Project Settings window

- Library manager enables simple handling libraries being used in a project

- The Messages Window displays all information, messages and errors detected during compiling and linking.

- The source-level Software Simulator lets you debug executable logic step-by-step by watching the program flow.

- The New Project Wizard is a fast, reliable, and easy way to create a project.

- Help files are syntax and context sensitive.

- Like in any modern Windows application, you may customize the layout of mikroBasic PRO for dsPIC30/33 and
PI1C24 to suit your needs best.

- Spell checker underlines identifiers which are unknown to the project. In this way it helps the programmer to spot
potential problems early, much before the project is compiled.

- Spell checker can be disabled by choosing the option in the Preferences dialog (F12).

MikroElektronika 52

mikroBasic PRO for dsPIC30/33 and PIC24

Code Editor

The Code Editor is advanced text editor fashioned to satisfy needs of professionals. General code editing is the
same as working with any standard text-editor, including familiar Copy, Paste and Undo actions, common for Windows

environment.

Available Code Editor options are: Editor Settings, Editor Colors, Auto Correct, Auto Complete and Style.

Editor Settings
Main Editor Settings Features are:

- Auto Save

- Highlighter

- Spelling

- Comment Style

- Code Folding

- Code Assistant

- Parameter Assistant

- Bookmarks and Go to Line

Options

Editor Settings

Project Files

W Restare Last Opened Project Restore All Opened Files

Save Breakpoints Save Bookmarks

If Opened File Is Externally Modified
(@) prampt For artion @ Reload file, but do not prompt
Ao Save

¥ Enable Auto Save Timeout Inkerval: minukes

Highlighter

¥ Highlight brackets
¥ Highlight begin..end pairs

Speling

W Check spelling

Comment skyle
@ £}

) ff {single line)
Advanced Editor Options

3 Open options dialog

Code Folding
W Enable code Folding

V' Show Ident Guides

) Ignore externally made changes

K Apply Cancel

mikoBasic PRO for dsPIC30/33 and PIC24

Auto Save

Auto Save is a function which saves an opened project automatically, helping to reduce the risk of data loss in case of
a crash or freeze. Autosaving is done in time intervals defined by the user.

Highlighter

Highlighting is a convenient feature for spotting brackets which notate begin or end of a routine, by making them
visually distinct.

Spelling

The Spell Checker underlines unknown objects in the code, so they can be easily noticed and corrected before compiling
your project.

Select Tools » Options from the drop-down menu, or click the Show Options Icon g and then select the Spell
Checker Tab.

Comment Style

Code Editor has a feature to change the comment style to either single-line or multi-line. Commenting or uncommenting
the selected code is done by a simple click of a mouse, using the Comment Icon |{..} and UncommentIcon {..} from
the Advanced Edit Toolbar.

Code Folding
Code folding is IDE feature which allows users to selectively hide and display sections of a source file. In this way it is
easier to manage large regions of code within one window, while still viewing only those subsections of the code that

are relevant during a particular editing session.

While typing, the code folding symbols ([=| and[+]) appear automatically. Use the folding symbols to hide/unhide the
code subsections.

bhegin
s

PORTAL :=0:
FORTE :=0:
Led Initi):

LCD_Out(l,1,txc[0]0;
LCD_Out{2,1,txc[1]);
delay rw=(1000)

Led Cmdil);

LCD_cmt{l,1,txt[1]):
LCD_Out{2,4,txc[2]);
delay w=(500)

end.

hegin El

MikroElektronika 54

mikroBasic PRO for dsPIC30/33 and PIC24

Another way of folding/unfolding code subsections is by using Alt+«— and Alt+—.

If you place a mouse cursor over the tooltip box, the collapsed text will be shown in a tooltip style box.

hegin |:f)
Leog
begin
PORTA := 07
PORTE := 0:
Led Indt () :

LCD_Cut(l,1,txt[0]);
LCD_cCut(2,1,ext[1]):
delay_ms (1000) ;

Led Cmdil);

LCD_Cut(1,1,txe[1]);
LCD_Out (2, 4,txc[2]);
delay_rms (500) ;

Code Assistant

If you type the first few letters of a word and then press Ctrl+Space, all valid identifiers matching the letters you have
typed will be prompted in a floating panel (see the image below). Now you can keep typing to narrow the choice, or you
can select one from the list using the keyboard arrows and Enter.

sp

[varisble sf SPibyte
variable sfr SPDR: byte
variable sfr SPSR: byte
wariable sfr SPCR: byte

Parameter Assistant

The Parameter Assistant will be automatically invoked when you open parenthesis “(” or press Shift+Ctrl+Space. If the
name of a valid function precedes the parenthesis, then the expected parameters will be displayed in a floating panel.
As you type the actual parameter, the next expected parameter will become bold.

channel : byte
ADC_Rea

Bookmarks

Bookmarks make navigation through a large code easier. To set a bookmark, use Ctrl+Shifttnumber. The same
princliple applies to the removal of the bookmarks. To jump to a bookmark, use Ctrl+number.

Go to Line

The Go to Line option makes navigation through a large code easier. Use the shortcut Ctrl+G to activate this option.

mikoBasic PRO for dsPIC30/33 and PIC24

Column Select Mode

This mode changes the operation of the editor for selecting text. When column select mode is used, highlighted text
is based on the character column position of the first character selected to the column of the last character of text
selected.

Text selected in this mode does not automatically include all text between the start and end position, but includes all

text in the columns between the first and last character selected.

Column mode editing is sometimes referred to as block mode editing as the act of selecting text forms a rectangle.

To enter this mode, press Alt + Left mouse button, drag the mouse towards the desired direction thus selecting the

text.

Editor Colors

Options

Editar d I
Schemes
Current Scheme: |Office 2003 Blue v | New Scheme Delete
Scheme Setup 1 HDEFINE DWM SEQUENCE ON ~
Element void Setup LBS () org Ox0041 {
Assembler
Binary
Character sfr char P2 abhsolute Oxi0;
Comment = const code const war = 10;
Float . idata unsigned long long var[10] ;
Hexadecimal) —
Identifier xdata signed long ext_var:
Tllegal Char pdata char pext var;
Nurber hdata bvar:
Octal
Prepracessar 1o sbit hit_warishle at PZ.EO:
Reserved Word
Spgce float float wvariable:
String =
Symbal unsigned int hex wvariable;
Wweb link signed int dec varisble;
= char bin variable = 'a';
signed char octal wvarishle:
Text Attributes
Bold Underling Italic Strikeout F¢ Inititate ABS controller for new
Foreground: Background: /i seseden deew
z0 PO = OxFO; B
I Elack v I Elack v
float_wvariable = 12.345;
Wi i e hex_warishle = Ox1234;
|] Custom b | ¥ Show Active Line dec_wvarishle = =izgalsg
hin warishle = 0k10101010;
ey @l = =] c:t,;l variahle = ;
Gradient From: Gradient To: = . ’
tal iakle += H:; /#* i
|] Sky Elue v| | J Wwhite v| octal warl e F#% illegal charac
Font:
I Ele - asm nop; /S single assembly line
<0
QK Apply Cancel

mikroBasic PRO for dsPIC30/33 and PIC24

Editor Colors option allows user to set, change and save text and color settings organized in schemes. Schemes
represent custom graphical appearance that can be applied to GUI (Graphical User Interface) to satisfy tastes of

different users.

Auto Correct

Auto Correct option facilitates the user in such a fashion that it automatically corrects common typing or spelling errors

as it types.
Options |£|
¥ Enable Auto Correct = Add Original: Replacement:
¥ Remove | |
Original | R.eplacement
wahie wahile
fi if
itn int:
cahr char
Advanced
W Correct Case to Makch Declaration ' Show Motification
J Output
0K Apply Cancel

This option is already set up to automatically correct some words. For example, if you type whiel, it will be corrected
to while when you press the spacebar:

while |

Autocorrect from whiel to while

a1

mikoBasic PRO for dsPIC30/33 and PIC24

The user can easily add its common typos by entering original typo, for example btye, to the Original box, and
replacement, by te, to the Replacement box, and just click "Add" button.
Next time when the typo occurs, it will be automatically corrected.

Auto Complete (Code Templates)

Auto Complete option saves lots of keystrokes for commonly used phrases by automatically completing user's typing.

Options |£|
Editor I
W Enable Auto Complete
Key word: |dow | o= Add ¥ Remove

Description; |do while |
Key word ’Description ’2
Far for {no { 1)
faors for statement
Ftemplate function header template
furiction ink func declaration
if if (na { 1)
ife if {no begin/end) else {no begin/end)
ifes if else

o |ifs if statement

i proc void func declaration

“|| ptemplate header comment for a project
switch switch statement o
do
{
twhile (|) ;
= 1}] &

0K Apply Cancel

mikroBasic PRO for dsPIC30/33 and PIC24

The user can insert the Code Template by typing the name of the template (for instance, dow), then press Ctrl+J and
the Code Editor will automatically generate a code:

dDmI

Auto Complete

You can add your own templates to the list by entering the desired keyword, description and code of your template in
appropriate boxes.
Autocomplete macros can retreive system and project information:

- $DATE% - current system date

- $TIMES - current system time

- $DEVICE® - device (MCU) name as specified in project settings
- $DEVICE CLOCKS - clock as specified in project settings

- $COMPILERS - current compiler version

These macros can be used in template code, see template ptemp1ate provided with mikroBasic PRO for dsPIC30/33
and PIC24 installation.

mikoBasic PRO for dsPIC30/33 and PIC24

Code Explorer

The Code Explorer gives clear view of each item declared inside the source code. You can jump to a declaration of
any item by double clicking it, or pressing the Enter button. Also, besides the list of defined and declared objects, code
explorer displays message about the first error and it's location in code.

ode Explorer 3]

|

= Gl Web links
o htkpe:) e mnikroe., com

@Include

= B main
5 LCD_RS
o LCD_EM
o LCD_D4
o LCDDS
o LD pe
o LDD7
o LCD_RS_Direckion
o LCD_EM_Direction
o LCD_D4_Direction
o LCD_DS_Direckion
o LCD_D6_Direckion
o LCD_D7_Direckion
o bkl
o btz
R
o kxkd
i

i@ Mave_Delay

The following options are available in the Code Explorer:

Icon Description

E}' Expand/Collapse all nodes in tree.

g | Locate declaration in code.

mikroBasic PRO for dsPIC30/33 and PIC24

Routine List

Routine list diplays list of routines, and enables filtering routines by name. Routine list window can be accessed by
pressing Ctrl+L.

You can jump to a desired routine by double clicking on it, or pressing the Enter button. Also, you can sort routines by
size or by address.

Routine List 3]

Sort By Name Sort By Line

[4

e 74 Somain
Line: S0 GMDVE_DELEV
Line: 54 E#IShift_Text Left
Line: 64 Edshift_Text_Right

Project Manager

Project Manager is IDE feature which allows the users to manage multiple projects. Several projects which together
make project group may be open at the same time. Only one of them may be active at the moment.
Setting project in active mode is performed by double clicking the desired project in the Project Manager, which will

result in bolding the project's name.
Also, the name of the currently active project will be diplayed in the Program Manager window title, alongside with the

number of projects in project group.

Project Manager [1/1] - Lcd.mepds c'\Progr... (X

FlEEENE SRR

= Iﬁ Lcd.mbpds
=117 Sources
Lcd.mbas
IC7) Binaries
I Project level defines
|7 Image Files
|C=) EEFROM Files
I Active Comments Files
=107 Output Files
Lcd.hes
Lcd.asm

I Other Files

61

mikoBasic PRO for dsPIC30/33 and PIC24

Following options are available in the Project Manager:

Icon

Description

=

Save project Group.

Open project group.

Close the active project.

Close project group.

Add project to the project group.

Remove project from the project group.

Add file to the active project.

Remove selected file from the project.

Build the active project.

& || |G | e || | R |(GB |G | o8

Run mikroElektronika’s Flash programmer.

For details about adding and removing files from project see Add/Remove Files from Project.

Related topics: Project Settings, Project Menu Options, File Menu Options, Project Toolbar, Build Toolbar, Add/Remove
Files from Project

62

mikroBasic PRO for dsPIC30/33 and PIC24

Project Settings

The following options are available in the Project Settings window:

- Device - select the appropriate device from the device drop-down list.
- MCU Clock - enter the clock frequency value.
- Build/Debugger Type - choose debugger type.

Project Settings
g Device

Name: |p30F4013 v

Frequency: §0,000000 | MHz

EBuild Type

() Release () ICD Debug
Debugger

() Software) mikralCD

Related topics: Edit Project, Customizing Projects, Project Manager

cgruces

(=) Build} Debugger Type _

mikoBasic PRO for dsPIC30/33 and PIC24

Library Manager

Library Manager enables simple handling libraries being used in a project. Library Manager window lists all libraries
(extension .mc1) which are instantly stored in the compiler Uses folder. The desirable library is added to the project by
selecting check box next to the library name.

In order to have all library functions accessible, simply press the button Check All ,"_1 and all libraries will be selected.
In case none library is needed in a project, press the button Clear All ||| and all libraries will be cleared from the
project.

Only the selected libraries will be linked.

2| B N
=+ mikroE "~
ADC
[BitReverseComple:x
|:| Butbon
[can
[can_spr
[conwersions
C_Type
] eerrOM
[FeT
[Firradix
[FLasH
[aled
[Gled_Fonts
[1zc
[tirradix
[keypadaxd
Led
Lcd_Constants
[Manchester
1 matrices
Mmc
Mrmc_FAT1E
D Cne_Wire
[Port_Expander
psz
1 P

&--8--8--8--8-8-0--8-8-8

E--E--B--8

L O T = = e

Iz

Icon Description

= Refresh Library by scanning files in “Uses” folder.Useful when new libraries are added by copying files to
= | “Uses” folder.

e

Rebuild all available libraries. Useful when library sources are available and need refreshing.

&

Include all available libraries in current project.

L&

No libraries from the list will be included in current project.

,:I Restore library to the state just before last project saving.

MikroElektronika 64

mikroBasic PRO for dsPIC30/33 and PIC24

Managing libraries using Package Manager

The Package Manager is a tool which enables users to easily install their own libraries in the mikrolDE. Libraries are
distributed in the form of a package, which is an archive composed of one or more files, containing libraries. For more

information on Package Manager, visit our website.

Upon package installation, a new node with the package name will be created in the Library Manager. For example:

[Library Manager

e a3 | [|

a

[sound

[=rr

[sp1_Etherret
[sPr_cled

[=spI_Led

[=p1_Leda
[sp1_tessac
[sprintf

|:| Sprinki

[sprintl
TEIEIC

|:| Tirme

[] TouchPanel
Trigonometry
[mwir

[varT

= Conversions

2 B 3 3 3 O R = 5 3 3 B 2

= _ Lib_Corversionsz

ByteToBinarysty
‘wordToBinaryStr
Lang'WordToBinaryStr
BinaryToiGray
GrayToBinary

A

o

From the Library Manager, the user can also uninstall the desired package by right clicking the the appropriate node,

and from the drop-down menu choose Uninstall package:

= Library Manager

A e) | [[

a

[sound

[=srr

[=PI_Ethernet
[sp1_lcd

[sPI_Led

[=sPI_Leds
[spr_tesssc
[sprintf

|:| Sprinki

[sprint!
TEOEIC

1 Time

[TouchPanel
Trigonometry
[7w

[uvart

E-8-8-8-8-8-8-g-u-u--g-m-a--8-8

Help
Examples
Urinstall pacl

BinaryToiGray

arayToBinary

-~

o

Related topics: mikroBasic PRO for PIC Libraries, Creating New Library

mikoBasic PRO for dsPIC30/33 and PIC24

Routine List

Routine list diplays list of routines, and enables filtering routines by name. Routine list window can be accessed by
pressing Ctrl+L.

You can jump to a desired routine by double clicking on it, or pressing the Enter button. Also, you can sort routines by
size or by address.

Routine List FXI

Sort By Name Sort By Line

e 7 -.t_.-rnain
Line: S0 OMDVB_DBLEY
Line: 54 EoIShift_Text Left
Line: &4 EShift_Text_Right

Statistics

After successful compilation, you can review statistics of your code. Click the Statistics Icon [-

Memory Usage Windows

Provides overview of RAM and ROM usage in the various forms.

mikroBasic PRO for dsPIC30/33 and PIC24

RAM Memory Usage

Displays RAM memory usage in a pie-like form.

RAM Memory Usage
T
[statcuses: Mibytess 1%
[omavalde: 1337bytes 9%
Tota: 2048 bytes
Functions Sorted
By Nome Chert
Functions Sorted
By Size Chart
Functions Sorted
By Address Chat.
Functions Tree
Summary
Project Name: C: _Demo.mbpds Time: 12/3/2009 11:45:51 AM
vepmiyos;con

Used RAM Locations

Displays used RAM memory locations and their names.

[B] statistics

Used RAM Locations

Used RAM
Locations
* Chck on Name column header b toggle between Name and Uniqus Asssmbler Mama

Address Name Address Name Name

61

mikoBasic PRO for dsPIC30/33 and PIC24

SFR Locations

Displays list of used SFR locations.

SFR Locations

SFRLacations

ROM Memory Usage

Displays ROM memory space usage in a pie-like form.

ROM Memory Usage
Usage:
| [sedt: 21806 bytes 67 %
| ROMMemony
| usace] Free: 10871 bybes 33%
Total: 32767 bytes

By Mame Chart

BySize Chat

By Address Chat

Functions Tree

Summary

Project Name: C! Demo.mbpds Tiwe: 12/3{2009 11:45:51 AM
yeeemikros com

MikroElektronika

mikroBasic PRO for dsPIC30/33 and PIC24

ROM Memory Constants

Displays ROM memory constants and their addresses.

[B] statisties

ROM Memory Constants

ROM Memary
Constants.

Functions

Sorts and displays functions in various ways.

Functions Sorted By Size

* Click.on column header to sort table by Address, Name, Unigue Assembler Name or Sze 3

mikoBasic PRO for dsPIC30/33 and PIC24

Functions Sorted By Name Chart

Sorts and displays functions by their name, in the ascending order.

a
RAM M Functions Scred by name
Usage

Used RaM
Locations.

‘SFRLocations

ROMMemory
Usage

ROM Memary
Constants
Functions

Functions Serted
By Name Chart

Funetions Serted
By Size Chart

Functions Sorted
By Address Chat

Functions Tree

Summary Led_out 126 (bytes)] - -
N ———| -

mu:DLne_ '

Functions Sorted By Size Chart

Sorts and displays functions by their sizes in a chart-like form.

saveCont | [tes) |-
. SP_Eihernel_getipaddress | [vtes) | -
SP_Ethernet_oetioMask | [4es) | -
SP Ethernet aetDnsipAddress | [4 es) | -
SPI Ethernet getGwinsddress | [qoyes) |-
e L
strote
s Delay_S00us
Delay_8ims:
ROMMemary Doty _tus | [12(wten) |
Corsar oS50
St 3232
Functions Led Chr_CP
i fess [
Functions Sorted SRR
By Name Chart SPL_Bthernet_wrteMemory {1
SF_Bthernel_setoResdaddress 1] (52 ibvtes)]
Functior rted 3
R istower £ [34 (oytes) | -
Srndiies oot s - (i Grpen}
st 1[4 Gores) |
srepy {1 [G6 tovtes |
e SPl_Ethermet MaCswap] [GRtonen] -
memeet L[58 (ovtes) | -
Summary 5P Bhemet Pewep {1 [eivesi |
SPLEthernst putbie {1 [S8(Evesi}
nibbiezhex [[40 tovtes |
SP_Bthernet_getBivte {1 [20 povtes) | -
seia 1 [w0oes]
SPI_Ethernst resdvea [[420ovtes) |
SP|_Ethernet_clearBitfieg [[34bytea)]
SP_Ethernet_wrteReg [[44 (oytes)
SPI_Bthernet_setBittea £ [45 ioytes)] -
wsaipna [[46 tytes ~
—
MikroElektronika

10

mikroBasic PRO for dsPIC30/33 and PIC24

Functions Sorted By Addresses

Sorts and displays functions by their addresses, in the ascending order.

Functions Sortad
By Address Chart

Function Tree

Displays Function Tree with the relevant data for each function.

[0 statisties

Functions Tree

1

Functions Sorted
By Sae = Led_Cmd

Functions Sorted ¥
By Address Chat pelay S

Functions Tree

Project Name: C!' . mibpds Time: 12/3/2009 11:95:51 AM

'l MikroElektronika

mikoBasic PRO for dsPIC30/33 and PIC24

Memory Summary

Displays summary of RAM and ROM memory in a pie-like form.

Summary

[static useat: Tilbytes 1%
[] Owsvalabie: 1337bytes 9%
ROMMemary Totak: 2048 bytes
1
Functions.
Functions Sorted
By Name Chart ~ROM Usage-
Usad; 21806 bytes 67 %
Functions Sorted
By Size Chart] e 10871 bytes 33%
] Totd: 32767 bytes
By Address Chat
Functions Tree
Summary
Project Name: C Demo, mbpds Tiwe: 12/3f2009 11:45:51 AM
vrerssmifros com
MikroElektronika 12

mikroBasic PRO for dsPIC30/33 and PIC24

Messages Window

Messages Window displays various informations and notifications about the compilation process.

It reports for example, time needed for preprocessing, compilation and linking; used RAM and ROM space, generated
baud rate with error percentage, etc.
The user can filter which notifications will Messages Window display by checking Errors, Warning and Hints box.

In case that errors were encountered during compiling, the compiler will report them and won’t generate a hex file. The
Messages Window will display errros at the bottom of the window by default.
The compiler also reports warnings, but these do not affect the output; only errors can interefere with the generation
of hex.

Etrars Warnings Hirits
Line Message Mo, Message Text Unik
u] 1 mBDsPic.exe -DEG -pPI0F4013 -MSF -GC - -..,
u] 132 Compilation Skarked :\Program Files\MikroelekkronikaimikroBasic PRO For dsPIC
1 1015 Hint: Compiling unit "c:\Program Files\Mikroele, .. UART.mbas
513 1010 Hint: Unit "UART.mbas" has been reconpiled UART.mbas
o 133 Compiled Successfully c:iProgram FilesiMikroelektronikalmikroBasic PRO for dsPIC!
u] 133 All files Compiled in 31 ms
u] 1143 Used R¥ (bytes): 32 (100%) Free R¥ (bytes),.. Used Rx (bytes): 32 (100%) Free Ry (bytes): 0(0%)
u] 1143 Skatic RAM (bytes): 41 Dynamic RAM (bwtes)... Static RAM (bytes): 41 Dynamic RAM (bytes): 2033
u] 1143 Used ROM {bytes): 820 (3%) Free ROM(bwt... Used ROM (bytes): 820 (3%) Fres ROM (bytes): 31948 (97
u] 144 Project Linked Successfully UART.mbpds
o 1004 COFF File successfully generated COFF file successfully generated
[u} 139 Linked in 609 ms
u] 140 Project 'UART.mbpds' completed: 1062 ms
u] 103 Finished successfully: 04 Dec 2009, 09:37:35 UART.mbpds
$5 2

Double click the message line in the Message Window to highlight the line where the error was encountered.

3

mikoBasic PRO for dsPIC30/33 and PIC24

Quick Converter

Quick Converter enables the user to easily transform numbers from one base to another.

Quick Converter [
Size Sign DECIMAL HEXADECIMAL - EIMARY CHARACTER
Osbis | @unsigned | 77| | oooooo+p| | oooooooo oooooooo ooogoooo o1oot ot | | M
() 16 bits

(®3zhbits (O Signed

FLOAT DECIMAL
| 136,693

Farmat
gg’l: FLOAT 32 bit (IEEE) FLOAT 32 bit (MICROCHIF) RADI{ 1.15

Otiex | 4308E49C| | BEORE49C| |

The user can convert integers of various sizes (8, 16 or 32 bits), signed and unsigned, using different representation
(decimal, hexadecimal, binary and character).

Also, Quick Converter features float point numbers conversion from/to Float Decimal, Float 32bit (IEEE), Float 32bit
(Microchip) and Radix 1.15 for dsPIC family of MCUs.

Macro Editor

A macro is a series of keystrokes that have been 'recorded' in the order performed. A macro allows you to 'record' a
series of keystrokes and then 'playback’, or repeat, the recorded keystrokes.

Macros E|

& |2 0212 &

MikroElektronika 11

mikroBasic PRO for dsPIC30/33 and PIC24

The Macro offers the following commands:

Icon

Description

o

Starts ‘recording’ keystrokes for later playback.

o’

Stops capturing keystrokes that was started when the Start Recording command was selected.

4

Allows a macro that has been recorded to be replayed.

=

New macro.

¥

Delete macro.

Related topics: Code Editor, Code Templates

Image Preview

There are a lot of occassions in which the user besides the code, must look at the appropriate schematics in order to
succesfully write the desired program.
The mikroBasic PRO for dsPIC30/33 and PIC24 provides this possibility through the Image Preview Window.

To add an image to the Image Preview Window, right click the Image Files node in the Project Manager:

Project Manager [1/1] - R5485_Master_Example.mbpds 3

BRI EEIEY

= Ij)_j RS485_Master_Example.mbpds

= E] Sources
R5485_Master_Example.mbas
E] Binaries
[T Project Level Defines
I==) EEPR.OM File]
=) Active Comr Close Project Chrl+k
= I output Files B Add Project
| Rs4a5
I Cther Files
[agdFie To Project...
L:l_-f Remove File From Project
Build CEr+F9 |
& mE Programmer Fi1

]

mikoBasic PRO for dsPIC30/33 and PIC24

Now, navigate to the desired image file, and simply add it:

Project Manager [1/1] - R5485_Master_Example.mbpds EaX]

A ELRTEREREEEY

& % RS485_Master_Example.mbpds
é} El Sources

R5485_Master_Example.mbas

E] Binaries

[T Project Level Defines

£ Image Files

T R

[C=) EEPROM Files

[T Active Comments Files

(=) Cutput Files

E R5485_Master_Example.hex

Next, right click the added file, and choose Set As Preview Image:

Project Manager [1/1] - R5485_Master_Example.mbpds %]

[FEEEIEEFEEIEY:

=3 |?_~, RS485_Master_Example.mbpds
E} E] Sources
R5485_Master_Example.mbas
E] Einaries
[T Project Level Defines
IC=) Image Files
- fil R5_485.jpa
IC=) EEPROM Files
[T Active Comments Fi
[T Output Files
- 5 Rs485_Master |
|7 Cther Files

Save Project Group

Close Project Chrl+K

Add Praject

Remove Project

Remove File From Project

il ChrHFg

mE Programmer F11

R
e
(=]
[AddFile To Project...
&
N
&

| Set As Preview Image Chri+al+P

MikroElektronika 16

mikroBasic PRO for dsPIC30/33 and PIC24

Once you have added the image, it will appear in the Image Preview Window:

1

§
LI
LBE491D1d

[1]

T o e

Also, you can add multiple images to the Image Files node, but only the one that is set will be automatically displayed
in the Image Preview Window upon opening the project.

By changing the Image Preview Window size, displayed image will be fit by its height in such a way that its proportions
will remain intact.

Toolbars
This section provides an overview of the toolbars available in mikroBasic PRO for dsPIC30/33 and PIC24 Help:

- File Toolbar

- Edit Toolbar

- Advanced Edit Toolbar
- Find Toolbar

- Project Toolbar
- Build Toolbar

- Debug Toolbar
- Styles Toolbar
- Tools Toolbar

- View Toolbar

- Layout Toolbar
- Help Toolbar

11 MikroElektronika

mikoBasic PRO for dsPIC30/33 and PIC24

File Toolbar
U E-HB E s

File Toolbar is a standard toolbar with the following options:

Icon Description

|j Opens a new editor window.

[% ~ | Open source file for editing or image file for viewing.

IH | save changes for active window.

an)

Save changes in all opened windows.

B

Print Preview.

A3

Print.

Edit Toolbar

Q@ 4B [3E

Edit Toolbar is a standard toolbar with the following options:

Icon Description

<3 | Undo last change.

Redo last change.

< ||¥

Cut selected text to clipboard.

i,

Copy selected text to clipboard.

it

Paste text from clipboard.

18

mikroBasic PRO for dsPIC30/33 and PIC24

Advanced Edit Toolbar

Gkt SRS 5 2

I3
I

.|

Advanced Edit Toolbar comes with the following options:

Icon

Description

Lo

Comment selected code or put a single line comment if there is no selection

Uncomment selected code or remove single line comment if there is no selection.

Select text from starting delimiter to ending delimiter.

Go to ending delimiter.

Go to line.

E—' Indent selected code lines.

-'E Outdent selected code lines.

] | Generate HTML code suitable for publishing current source code on the web.
Find/Replace Toolbar

LAl

Find/Replace Toolbar is a standard toolbar with the following options:

Icon

Description

ol

Find text in current editor.

Find next occurence.

Find previous occurence.

20 | % ||

Replace text.

i)

Find text in files.

19

mikoBasic PRO for dsPIC30/33 and PIC24

Project Toolbar
Fi e g s E ST SRl

Project Toolbar comes with the following options:

Icon Description

E}, New project.

I_'% * | Open Project

EH Save Project

& | Edit project settings.

I_'ig Close current project.

.iJ, Clean project folder.

/= | Add File To Project

[ﬂ_—,"f Remove File From Project
Build Toolbar

g T

Build Toolbar comes with the following options:

Icon Description

‘%, | Build current project.

;ﬂ Build all opened projects.
% Build and program active project.
% Start programmer and load current HEX file.

mikroBasic PRO for dsPIC30/33 and PIC24

Debug Toolbar

@"

|'_§nJ Eﬁh i1 Of &l

= [B | &

Debug Toolbar comes with the following options:

Icon Description
Eb, Start Software Simulator or mikrolCD (In-Circuit Debugger).
|'_§DJ Run/Pause Debugger.
E—?g Stop Debugger.
g1 | Step Into.
@, | Step Over.
g | Step Out.
&l | Run To Cursor.
= Toggle Breakpoint.
View Breakpoints Window
l}* Clear Breakpoints.
&d” | View Watch Window
L1 | View Stopwatch Window
Styles Toolbar

Styles toolbar allows you to easily change colors of your workspace.

Dffice 2003 Blus [v]

Archic

Office 2003 5
Office 2003 Olive
Office %P
Chocolate

Sitwerfox
Soft sand

T

81

mikoBasic PRO for dsPIC30/33 and PIC24

Tools Toolbar
B4 4y

Tools Toolbar comes with the following default options:

Icon Description
Ell | Run USART Terminal

1L |EEPROM
4 |Asciichart

Seven Segment Editor.

Open Active Comment editor.

Options menu

Tip : The Tools toolbar can easily be customized by adding new tools in Options menu window.

View Toolbar

dl 1| @

View Toolbar provides access to assembly code, listing file and statistics windows.

Icon

Description

dq

Open assembly code in editor.

vl

Open listing file in editor.

[

View statistics for current project.

82

mikroBasic PRO for dsPIC30/33 and PIC24

Layout Toolbar

Styles toolbar allows you to easily customize workspace through a number of different IDE layouts.

l
|
=]

1024=768
Debug layout
Default

|egacy

Messages

Description

Delete the selected layout.

| |IELl |8
3 =

Save the current layout.

Set the selected layout.

=

Help Toolbar

@ .0

Help Toolbar provides access to information on using and registering compilers:

Icon Description

&l | Open Help file.

.2 | How To Register.

Related topics: Keyboard shortcuts, Integrated Tools

mikoBasic PRO for dsPIC30/33 and PIC24

Customizing IDE Layout
Docking Windows

You can increase the viewing and editing space for code, depending on how you arrange the windows in the IDE.

Step 1: Click the window you want to dock, to give it focus.

Projeckt Manager

El Binaries

7 Project level defines
|7 Image Files

|7 EEFROM Files

|7 Active Commerts Files
=07 Output Files

- Led.hesx

. Led.asm

|7 Other Files

Step 2: Drag the tool window from its current location. A guide diamond appears. The four arrows of the diamond point
towards the four edges of the IDE.

MikroElektronika 84

mikroBasic PRO for dsPIC30/33 and PIC24

Step 3: Move the pointer over the corresponding portion of the guide diamond. An outline of the window appears in the
designated area.

Step 4: To dock the window in the position indicated, release the mouse button.

Tip : To move a dockable window without snapping it into place, press CTRL while dragging it.

Saving Layout

Once you have a window layout that you like, you can save the layout by typing the name for the layout and pressing
the Save Layout Icon @
To set the layout select the desired layout from the layout drop-down list and click the Set Layout Icon .

To remove the layout from the drop-down list, select the desired layout from the list and click the Delete Layout

Icon .

Debug Layout

<Default Layout:> .
Code Layout

Debug Lagout
lyout L

Auto Hide

Auto Hide enables you to see more of your code at one time by minimizing tool windows along the edges of the IDE
when not in use.

- Click the window you want to keep visible to give it focus.

- Click the Pushpin Icon 2L on the title bar of the window.

mikoBasic PRO for dsPIC30/33 and PIC24

Praoject Manager [X]

— pe— — —
ul% % % B U Lg E Project Mana
| ®E2
2 Surces = I% & ag
Led.mbas 20 soun] 2
IC7) Einaties sz || T
El Project level defines El Binar ‘P—‘l ?‘n".
IC=) Image Files & projel— %
[C) EEPROM Files =) mag &
IT=) Active Comments Files = eePR 2
=107 Qutput Files) Activ =
Led. hex =6 cutp
Led.asm L
E] Other Files d
I Cthe
(2]
I I

When an auto-hidden window loses focus, it automatically slides back to its tab on the edge of the IDE. While a window
is auto-hidden, its name and icon are visible on a tab at the edge of the IDE. To display an auto-hidden window, move
your pointer over the tab. The window slides back into view and is ready for use.

Options

Options menu consists of three tabs: Code Editor, Tools and Output settings

Code editor

The Code Editor is advanced text editor fashioned to satisfy needs of professionals.

Tools

The mikroBasic PRO for dsPIC30/33 and PIC24 includes the Tools tab, which enables the use of shortcuts to external
programs, like Calculator or Notepad.
You can set up to 10 different shortcuts, by editing ToolO - Tool9.

mikroBasic PRO for dsPIC30/33 and PIC24

Options

J Editor

Tool Mame: | Motepad

File: Marne: | CwIND DWW SYHOTERAD . EXE

Pararneters:

Macic: | soHEX_FILE_NAvE Ful path andname o the .. v Inset

Shortcut: | F11 el

9 Clear all fields

d:zFICFlazh O ptions

[Cloze when finizshed
Tools

Tool?

Toold

Tool3

J/ Output

Output settings

By modifying Output Settings, user can configure the content of the output files.
You can enable or disable, for example, generation of ASM and List file.

Also, user can choose optimization level, and compiler specific settings, which include case sensitivity, dynamic link for
string literals setting (described in mikroBasic PRO for dsPIC30/33 and PIC24 specifics).

Build all files as library enables user to use compiled library (* .mc1) on any MCU (when this box is checked), or for a
selected MCU (when this box is left unchecked).

For more information on creating new libraries, see Creating New Library.

87 MikroElektronika

mikoBasic PRO for dsPIC30/33 and PIC24

Options

Cubput Settings
W Generate ASM file

¥ Include HEX opcodes

W Include ROM constants
Dutput Settings Include ROM Addresses
W Generate list file

¥ Include debuginfo

W Include source lines in output Files

W Generate COFF file
W Long HEX Format

Optimization level:
Four L ¥ Enable 554 optimization

Compiler

I Case sensitive
" Dynamic link For skring literals

' Build all files as library

MikroElektronika

mikroBasic PRO for dsPIC30/33 and PIC24

Integrated Tools

Active Comments Editor

Active Comments Editor is a tool, particularly useful when working with Lcd display. You can launch it from the drop-

down menu Tools > Active Comments Editor or by clicking the Active Comment Editor Icon 1@ from Tools toolbar.

Active Comments Editor E|
Enker comment name:

|activeC0mment| |

Ackive Comment Ackions:
Mew Rename Delete

Properties:

1= Attributes
Url
Image
Filz

1=l Everts
OnlLeftClick + alt
OnRightClick,
onbblClick
OnMouseCrver

MMisc;
Add Image To Project

Add File To Project

Save Cancel

mikoBasic PRO for dsPIC30/33 and PIC24

ASCII Chart

The ASCII Chart is a handy tool, particularly useful when working with Lcd display. You can launch it from the drop-
down menu Tools > ASCII chart or by clicking the View ASCII Chart Ilcon + from Tools toolbar.

0 |1|2|3|4|s5|6|7|8|9|a|B|c|D|E|F
o |NUL SOH|STX ETX EOT ENQ ACK BEL BS | HT [LF VT FF CR SO I
I 1 2 3 4 5 -] 7 g el 10 11 12 13 14 15
, |DLE DC1DC2 DC3 DC4 NAK SYN ETB[GAN EM SUB ESC| FS | GS RS US
16 17 18 19 20 21 22 23 24 25 26 27 28 29 a0 31

T sec| | " (% % (% & [([+ . -].1]v
32 33 34 35 36 37 35 bl 40 41 42 43 44 45 46 47

? 0 1|2 |34 5|6 |7|8|0o|:|;|<|[=]>]2
45 49 S0 51 52] 54 55 SE 57 58 59 [=11) &1 [=¥4 63
[,/@ A B c b E F G H I 1 K L M N O
&4 55 (1] 67 [=1:] 59 70 71 72 73 74] 76 77 Fi:] 79

T P O R S T U ¥ W X ¥ 2z [% 1 ~ _
&0 g1 82 83 84 85 89 a0 a1 92 93 Q4 95

T : a b ¢ d e i i k I m n o
95 a7 95 99 | 100 | 101 i i0s | 106 | 107 | 108 | 109 110 | 111
T p g r s t u z { | } ~ DEL
| 112 113) 114 | 115 | 116 | 117 I HEY: 0x66 1 1%2 123 | 124 | 125 136 127
8 E O » F » e T BIM: 01100110 o 5 < E O Fd O
| | 128 | 129 | 130 | 131 | 132 | 133 | 134 T35 T 15 [157 | 138 | 139 | 140 | 141 | 142 1.‘23
9 O * * - » e | - — | 7™ | g » e O Z ¥
144 | 145 | 146 | 147 | 145 | 149 | 150 | 151 | 152 | 153 | 154 | 155 | 156 | 157 | 155 | 159

T i ¢ £ o ¥ '8 " @ a « |4 - |® °
160 | 161 | 162 | 163 | 164 | 165 | 166 | 167 | 168 | 169 | 170 | 171 | 172 | 173 | 174 | 175

T o + 2 3 - n L] . ; 1 o »o | Va | V2 | 3|
| 1‘?6 1?’? 138 139 1?0 151 | 182 | 183 1‘84 1?5 1?6 lﬁ? 1‘88 1?9 1?0 1?1

c|® A AR A A &E ¢ E EE E T 1|1 I
| | 1%z 123 1?4 1?5 1?6 12? 1_9_8 199 | 200 291 292 293 294 295 206 | 207
p|P fjd 6 66 & x @ 0|0 0 TV P B
| 205 | 209 210 | 211 | 212 | 213 | 214 | 215 | 216 | 217 | 218 | 219 | 220 | 221 | ZEE | 223
f|la a a i & a = ¢ & e @& & i | i i/ ;i
| | 224 | 225 | EE0 | 22V | ZEG | 229 | 2300 231 | 232 | 233 | 234 | 235 | 236 | 237 | 235 | 239
Fp|o fi 0666 8 8 + 6w u 0 aly b ¥
| 1240 | 241 | 242 | 243 | 244 | 245 | 240 | 247 | 248 | 249 | 200 | 251 | 252 | 253 | 254 | 255

mikroBasic PRO for dsPIC30/33 and PIC24

EEPROM Editor

The EEPROM Editor is used for manipulating MCU's EEPROM memory. You can launch it from the drop-down menu

Tools » EEPROM Editor.

When you run mikroElektronika programmer software from mikroBasic PRO for dsPIC30/33 and PIC24 IDE - project

name . hex file will be loaded automatically while ihex file must be loaded manually.

MikroElektronika EEPROM Editor

. EEPROM Editor

Device: EEPR.OM Size: EEPROMFill:
FI0F4013 - Brytes Yalpe: Ox FF Eill
EEPROM Data

To1 [0z [03 04 |05 | 05 [07 |08 | 09 |0a |8 | oC |op | o |

Save

EEPROM Edi:
Tnout Format: EEFROM Address: EdRvaue:
" bec Start Adcvess: Ox FFFF ;
A [+]autoine i

Edit

Filter Designer

The Filter designer is a tool for designing FIR and IIR filters. It has an user-friendly visual interface for setting the filter
parameters. Filter designer output is the mikroBasic PRO for dsPIC30/33 and PIC24 compatible code. You can launch

it from the drop-down menu Tools > Filter Designer.

a1

mikoBasic PRO for dsPIC30/33 and PIC24

FIR Farameters | FIR Window FIR Frequency
FIR Porsreters
FIR Window Dvas stip Mok Sonut
FIR: Frequersy Devicer | PAUFA013 v Samping frequency: TR e
= R
IR, Par amsters Clockz [060.000000 L ADC Input Chanrel: |10 (4]
TR, Prototype
IR Fraguugrcy
= Source Code D A (48]
ol FRO Fites type: | Lowpass fiber v Weass: | 4000 e
sbroPscal PRO —
mkroBasic PRO Fiter order: |20]
Schematics] I-‘B
PRFEOLA Window: | Rectindgelar i
PI0F4L3

L&

Wipass Watop

FIR filvers are characterized by a linear phase and by a constant group delay.
The bad side is a high order of the filter which means higher complexity,

A linear phase is the main of FIR fitars.

If a linear phase is not an issue, FIR fitters are not a good choice,

instead, 1R filters have much lowar arder with almost the same effacts.
Haoweaver, IIR filters have a very non-linear phase charactenistic,

Graphic Lcd Bitmap Editor

The mikroBasic PRO for dsPIC30/33 and PIC24 includes the Graphic Lcd Bitmap Editor. Output is the mikroBasic
PRO for dsPIC30/33 and PIC24 compatible code. You can launch it from the drop-down menu Tools » Glcd Bitmap
Editor.

MikroElektronilca GLCD Bitmap Editor

| soon [rese2 | noka 2010

File loaded: banner.bmp
Pichure presview

Load BMP 2400128 pix | bwe

Inwert Picture

GLCD Size [controlier

240054 (TE963C)
128128 (TE963C)
) 1284 (notime, yet)

_} 1 PExaR ot i, yer)

255,258,285 ,255, 255,255,255, 255,255, 255,255,255, 255,255,128, 0,
o, o, 0, 0, o 0o, o, 0, 0, 0, 0, 0, 0, 0, 0, O,
o, 0, o, 0, o 0, o, 0, 0, 0, 0, L,128 @0, 0, O,
o, 0, o, 0, ® 0, ©, 0, O, 0, 0, O, 0, @, 0, O, ~

Generated CODE

[mmmmmmm e ————— - - -~

/ GLCD Picture name: bamner.bmp

/ GLCD Model: Toshiba TE963C 240x128 il

A mmmmmmmmmmmmmmm e - ot @ milroC FRO
unsigned char const banner_bmp[3840] = { . mikroPascal PRO
255,255,255, 255,255,255, 255, 255, 255, 255, 255, 255, 255,255, 255, 285, _ mikroBasic PRO

Copy Code To Clipboard £

92

mikroBasic PRO for dsPIC30/33 and PIC24

HID Terminal

The mikroBasic PRO for dsPIC30/33 and PIC24 includes the HID communication terminal for USB communication. You
can launch it from the drop-down menu Tools » HID Terminal.

. mikroElektronika USB (HID) Terminal

(=] = =]
|Termina| | Descriptor
HID Devices: iaf
ABBEAHOME -
ABBAHOME

mikroE HID Librar
Dell Premium USB Optical House

Communication

[HID ReadsWrite Test send

I~ &ppend CR v Send as Twping

I~ &ppend LF I~ Send as Mumber

ormat

& ASCIT " HER " DEC Clear
HID Read/Write Test -
4 LS

mikoBasic PRO for dsPIC30/33 and PIC24

Lcd Custom Character

mikroBasic PRO fordsPIC30/33 and PIC24 includes the Lcd Custom Character. Outputis mikroBasic PRO for dsPIC30/33
and PIC24 compatible code. You can launch it from the drop-down menu Tools > Lcd Custom Character.

MikroElektronika LCD Custom Char Generator 3]

i LY - — = —
AR " +H =] | L] =l
5=x 10 Save... Load... Fill all Cclear all Invert

Preview

H+E

Font size
@ 5x%7 + cursor line

) 5%10 + cursor line

I I
]
N (N
HEEEE
]
L[(W]
I
L

CGRAM address
Char:

Char data row:

mikroC PRO mikroPascal PRO | mikroBasic PRO

const character as byte[5] = (0,4,4,31,4,4,0,0)

sub procedure CustomChar (dim pos_row as byte, dim pos char as byte)
dim i as byte
Lod Crd(64)
for i = 0 to 7
Lezd Chr CP(character[i])
next i
Led Cwd(LCD_RETURN HOME)
Lod Chr{pos_row, pos_char, 0)
end sub

< ¥

Generate Code i Copy Code To Clipboard

MikroElektronika 94

mikroBasic PRO for dsPIC30/33 and PIC24

Seven Segment Editor

The Seven Segment Editor is a convenient visual panel which returns decimal/hex value for any viable combination you
would like to display on seven segment display. Click on the parts of seven segment image to get the requested value

in the edit boxes. You can launch it from the drop-down menu Tools » Seven Segment Editor or by clicking the Seven

Segment Editor Icon h from Tools toolbar.

Seven Segment Editor 3]

Cornrnon cathode:

113

Cormrmaon anode:
142

Decoding Format:
'@ Decirnal

UDP Terminal

The mikroBasic PRO for dsPIC30/33 and PIC24 includes the UDP Terminal. You can launch it from the drop-down
menu Tools > UDP Terminal.

MikroElektronika UDP Terminal =
=Setting:
[PAddress: | 192.168.020.025 | Connect

=Send:

mikroElekkronika | F—— Snd —4

Append: [CR " 3end as kyping

FALE " Send as number

mikroElektronika

Clear

~Recei

@ ASCII I HEX | DEC

mikroElektronika

mikoBasic PRO for dsPIC30/33 and PIC24

USART Terminal

The mikroBasic PRO for dsPIC30/33 and PIC24 includes the USART communication terminal for RS232 communication.
You can launch it from the drop-down menu Tools » USART Terminal or by clicking the USART Terminal Icon &from

Tools toolbar.

MikcroElektronik s Usart Terminal

L — d
ComPort: com ¥ || [mikroElskiraniks | send S
Baudrater (5600 bys _ A Support ASCH © Append Mewline | 65/2| Send ASCIL Fopait sendng srscy
Stop Bits: one Stop Bit b Send as typing
Papity: Naone b Send from file
" Check Parity
Dutabits: [Eight ey Clear © Add Time
Buar sce: | 1024 w || mikroElekcronika |
Flow contral: None b
|
-Dista Fou Hew Line Sattings
& asen & CRALF (0300 + 0x0A)
O Hes LR {ou0a)
L1 DEC
B) CR (0x0D)
- &
femonseci] |_osenee s wae—
- Auto Connect l @ =
[Clear | Add Time + Append to end of file
: nikroElekuronika
| Clear |
Connected to COML

MikroElektronika 96

mikroBasic PRO for dsPIC30/33 and PIC24

Active Comments

The idea of Active Comments is to make comments alive and give old fashioned comments new meaning and look.
From now on, you can assign mouse event on your comments and 'tell' your comments what to do on each one. For
example, on left mouse click, open some web address in your browser, on mouse over show some picture and on
mouse double click open some file.

Suppose we are writing a example for a GSM/GPSR module which is connected to the EasyPIC6 and we would like to
provide a photo of our hardware (jumpers, cables, etc.). within the example.

It would also be nice to put some documentation about chip we are using and a GSM module extra board. Now we can
have all those things defined in one single comment using Active Comment Editor.

New Active Comment

When you start Active Comment Editor for the first time (from the View menu, from editor's pop-up menu, or by pressing
Ctrl + Alt + P) you will get an empty editor:

Active Comments Editor
Select Active Comment:

Active Comment Actions:
New [Renamity] [mmbelete

Properties:

Misc:

! Add Image Jo-Projedt]

[Aad File To Project]

Save Cancel

By clicking the Meaw button you are prompted to enter a name for the comment:

97 MikroElektronika

mikoBasic PRO for dsPIC30/33 and PIC24

Active Comments Editor E|
Enter comment name:

|activeC0mment| |

Active Cormment Actions:
New Rename Delate

Properties:

=l Attributes
Ul
Image
File

=l Events
OnlLeftClick + Alk
OnRightClick,
OnDbIClick
OnMousedver

Misi:
Add Image To Project

Add File To Project

Save Cancel

You can notice that when you start typing a name, properties pane is automatically displayed so you can edit properties

if you wish. A Comment will be is created when you click Save button.
Properties are consisted of two major categories - Attributes and Events.
Attributes can be:

- URL - Valid web address.
- Image - Image has to be previously added to Project (Project Manager > Images).
- File - File has to be previously added to Project (Project Manager > Other Files).

There are four predefined event types you can apply to an Active Comment:

1. OnLeftClick + Alt
2. OnRightClick

3. OnDoubleClick
4. OnMouseOver

mikroBasic PRO for dsPIC30/33 and PIC24

First three event types can have one of the following three actions:

1. OpenUrl - Opens entered URL in default Web browser.

2. OpenFile - Opens a file within a default program associated with the file extension (defined by Windows).
3. None - Does nothing.

The fourth event, OnMouseOver, has only 2 actions:

1. Previewlmage - Shows image when cursor is moved over a comment.

2. None - Does nothing.

Attributes are tightly bounded with events. For example, you can not have OnLeftClick + Alt -> OpenFile if there is no

file attribute set, or if there is no file added to project. The same behavior applies to image attribute.

Let's start editing our Active Comment by entering some valid web address in the URL field:

= Attributes
Url
Image
File

=l Events
OnLeftClick + Al
OnRightClick
OnDblClick
OnMouseCrer

v, rrikroe, com|

For every Active Comment a XML file will be created, containing all valid information regarding the Active Comment -

attributes, events, etc. and it is automatically added to Project manager after saving it:

Project Manager [1,/1] - Led_Blinking.mbpds=

B LS EEIEY

= Ijl—, Led_Blinking.mbpds

= |E| Sources
Led_Elinking.mbas
I Binaries
I Project Level Defines
= [Image Files
LEDs.jpg

EASYdsPICE.ipg
I EEPROM Files

= [0 Active Comments Files
= LEDxml
= [T Output Files
Led_Blinking.hex
I other Files

mikoBasic PRO for dsPIC30/33 and PIC24

You can see the contents of the created XML file by expanding Active Comment Editor:

Active Comments Editor ®
Enker comment name: cactiveComment>
|activeC0mment | <Attributes>

) i <Url-www.mikroe. com</Url:>

Active Comment Actions; | <Image></ Image>
New R Deleat:
& enams e <Filer</File>

Propetties: </Attributes>
= Attributes <Events>

LUrl v ik e, com| <OnLeftClick:</0OnLeftClick:>

Image <OnRightClick></OnRightClick>

File <0nDb1Click></0nDblClick>
=) Events <OnMouselver:</0nMouselrer:

onLeftClick + Al

.) </Events:

OnRightClick, </ actireC .

orDbiClick activetommen

OnMouseCryer

<
Misc:
Add Image To Project
Add File To Project
Save Cancel

As we mentioned above you can add image or file which are already included in project. If the the desired image or file

aren't added, you can do it directly from here by clicking the | add Image To Project | Or Add File To Project | button.

MikroElektronika 100

mikroBasic PRO for dsPIC30/33 and PIC24

Next file dialog will be opened:

Open

Loak in: | I3 Images

v O3 mr

[=1={qnN
My Recent
Documents

My Documents

=
=
[}
Dla
ER7
a
=%
T

File name: |Easy_GSM_GFRS

J =

.

Files of bype: | Image Files[".brmp, *.jpg. *. pngl

v | [Cancel]

My Netwark [[]Open as iead-only

There, you should select the desired image to be added. In our example, Easy GSM GPRS. Jpg image will be added.

Selected picture is automatically added to the drop down list of the Image field in Active Comment Editor:

Active Comments Editor E|
Select Active Comment:
|activeComment w |
Active Comment Actions:
New Rename Delete

Properties:
= Attributes

Lirl ww, mikyoe, com

Image Easy_G5M_GPRS.jpa| &

File:
=l Events

OnLeftClick + Alk

OnRightClick.

CnDblClick

OnMouseCver

=
Misc:
Add Image To Project
Add File To Project
Save Cancel

101

mikoBasic PRO for dsPIC30/33 and PIC24

Now, when image has been selected, we can assign an event to it. For example, OnMouseOver will be used for
Previewlmage action, and OnLeftClick + Alt will be assigned to OpenUrl action:

= Atkributes
Url v, Tikroe, com
Image Easy_GSM_GPRS.jpg
File

=l Events

onLeftClick + Al OpenUrl
OnRightClick, Mone
OnbDblClick.

OnMouselver PreviewImage

Now we can save our changes to Active Comment by clicking the Save button.
Note: Setting file attributes is same as for image, so it won't be explained separately.

Once we have finished creating our active comment, we can notice that it has been added to source file on current caret
position with ac: prefix 'telling' IDE that it is active comment:

|I' ac:activecomment
20

Now let's try it. If you LeftClick+Alt on it, URL in default Web browser will be opened. If you hover the mouse over it,
you will see an Image preview:

|" zc:activecomment
T

30

40

L0

MikroElektronika 102

mikroBasic PRO for dsPIC30/33 and PIC24

There is another way to add an active comment to an active project. You can do it simply by typing a comment in old
fashion way, except with ac: prefix. So it would look like this:

' oac:activelommen tg Add Comment To Project

a0

Notice that when you stop typing, Add Comment To Project button will show. By clicking on it, you will open Active
Comment Editor and comment name will be already set, so you need only to adjust attributes and settings.

After saving you can always edit your active comment by Active Comment Editor, and switch between comments
directly from editor.

If you remove a file from the Project Manager or add an Active Comment File which contains information about the file
which is no longer in project, and hover the mouse over the comment, you will be prompted to either add file to project
or remove event definition from Active Comment for this file:

'E File linked to this active comment is missing!
-

‘Wwould you like to add file bo a project and make events associaked with
inwalid , or unlink File From Active Comment?

{ V | Show more infa es

If you remove active comment file from the Project Manager, you'll receive this message:

'E Missing a file for this active comment!
-

Wwould you like to add file to a project , or delete this Active
Caormment?

(V) Show maore info Yes

Click on Yes button you'll prompted for an active comment file:

103 MikroElektronika

mikoBasic PRO for dsPIC30/33 and PIC24

Open
Leok in: | 59 Easy_GSM_GPRS Y 02 = E
LY activeCamment
4 2} activeCommentz
My Recent
D ocuments
?‘L_'_'
Desktop
ty Documents
tdy Computer
File name: | v | [Open l
. Files of type: |Active Link Files{" xmi] v | [Cancel]
My Netwark [] Open as read-only

If you click No, comment will be removed from the source code.

Renaming Active Comment

When you click on rename button, you will be prompted to enter new name:

Active Comments Editor EI
Select Active Comment:
| activeComment w |
Ackive Corrnent Ackions:
New Rename Delete
Enter new Active Camment Mame:
Rename Cancel

Properties:
1= Attributes

Url) Tk 02, Comm

Image Easy_G5M_GPRS.jpg

File:
1=l Events

OnLeftClick + Ak Openlrl

OnRightClick, Mone =

onDbIClick

OnMouseCver PreviewImage
IMisc:

Add Image To Project
Add File To Project
Save Cancel

104

mikroBasic PRO for dsPIC30/33 and PIC24

Now click again Rename button. Now you have renamed your Active Comment in such a way that its filename, source
code name are changed:

I" 2c: 2ctiveCommentRename

30

Deleting Active Comment

Deleting active comment works similar like renaming it. By clicking on delete button, you will remove an active comment
from both code and Project Manager.

105 MikroElektronika

mikoBasic PRO for dsPIC30/33 and PIC24

Export Project

This option is very convenient and finds its use in relocating your projects from one place to another (e.g. from your
work computer to your home computer).

Often, project contains complicated search paths (files involved within your project could be in a different folders, even
on different hard disks), so it is very likely that some files will be forgotten during manual relocation.
In order to simplify this, Export Project gives you opportunity to do this task automatically.

To open Export Project, from Project menu select Export Project or hit Ctrl + Alt + E. Following window will appear:

Export Project [z|

Select project ko export:
|C:'|,Pr0gram Files\MikroelekkronikaimikraBasic PRO For dsPIC'l,ExampIes'l,Other'l,Time'l,Time_Demo.mb|:

Select destination folder:

| D\Project| D|

Export Project & Cancel

In the empty input boxes, current location and the destination folder of the desired project should be entered.

By default, currently active project will be set for export. You can change it any time by clicking the Open Button .

Once you have entered the appropriate data, click Export Project button. After exporting is done, and if everything was
OK, you'll receive a message:

Information

vi.) Project successfully exported!

‘au have successfully exported the project. Al files fram
the project are now copied to "D\Project”

Now, Export Project has copied all project files into desired folder and changed project search paths, so you can easily
move the entire folder to another location and run the project.

MikroElektronika 106

mikroBasic PRO for dsPIC30/33 and PIC24

Jump To Interrupt
Lets you choose which interrupt you want to jump to.

Requirement: Interrupt routine is included in project.

You can call Jump To Interrupt by selecting Run > Jump To Interrupt from the drop-down menu, or by clicking the Jump

To Interrupt Icon @ , from the Watch Values Window.

®

Awailable Interrupts

0x0004 : ReservedTrapd
00006 : OscillatorFail
00005 : AddressError
00004 : StackError
0000 : MathError
0x000E : ReservedTraps
0x0010 : ReservedTraps
0x0012 : ReservedTrap? =
0x0014 ¢ INTOInkerrupk
0x0016 ¢ IC1Inkerrupt
0x0015 @ OZ1Interrupt
0x0014 @ T1Inkerrupt
0001 ¢ IC2Inkerrupk
0:001E @ OiZ2Inkerrupt
00020 @ T2Inkerrupk
00022 : T3Inkerrupk
1Interrupt
00026 : U1R=INkerrupk
00025 : U1TxInkerrupt
00024 @ ADCInterrupk
00020 : NYMInterrupt
0x00Z2E : SI2CInkerrupt
00030 : MIZCInkerrupt
00032 @ CMInkerrupt
00034 @ INT1Inkerrupk
00036 @ IC7Inkerrupk
000353 : IC8Inkerrupk
00034 @ OC3Inkerrupk
0003 @ OZ4Inkerrupk
0x003E : T4Inkerrupt v

>

[Jonly used oK Cancel

By checking the Only Used box, you can display only the used breakpoints.

107 MikroElektronika

mikoBasic PRO for dsPIC30/33 and PIC24

Regular Expressions

Introduction

Regular Expressions are a widely-used method of specifying patterns of text to search for. Special metacharacters
allow you to specify, for instance, that a particular string you are looking for, occurs at the beginning, or end of a line, or
contains n recurrences of a certain character.

Simple matches

Any single character matches itself, unless it is a metacharacter with a special meaning described below. A series
of characters matches that series of characters in the target string, so the pattern “short” would match “short”
in the target string. You can cause characters that normally function as metacharacters or escape sequences to be
interpreted by preceding them with a backslash ™\ .

For instance, metacharacter “~” matches beginning of string, but “\ ~” matches character *~”, and “\\” matches
"\, etc.

Examples:

unsigned matches string 'unsigned’
\“unsigned matches string ' “unsigned’

Escape sequences

Characters may be specified using a escape sequences: “\n” matches a newline, "\ t” a tab, etc. More generally,
\xnn, where nn is a string of hexadecimal digits, matches the character whose ASCII value is nn.

If you need wide (Unicode) character code, you can use ‘\x{nnnn}’, where ‘nnnn’ - one or more hexadecimal
digits.

\xnn - char with hex code nn

\x {nnnn) - char with hex code nnnn (one byte for plain text and two bytes for Unicode)
\t - tab (HT/TAB), same as \x09

\n - newline (NL), same as \x0a

\r - car.return (CR), same as \x0d

\ £ - form feed (FF), same as \x0c

\a - alarm (bell) (BEL), same as \x07

\e - escape (ESC), same as \x1b

Examples:

unsigned\x20int matches 'unsigned int' (note space in the middle)
\tunsigned matches 'unsigned' (predecessed by tab)

Character classes

You can specify a character class, by enclosing a list of characters in [1, which will match any of the characters from
the list. If the first character after the “ [is “~”, the class matches any character not in the list.

MikroElektronika 108

mikroBasic PRO for dsPIC30/33 and PIC24

Examples:

count[aeiou]r finds strings 'countar', 'counter', etc. but not 'countbr', 'countecr’', etc.
count[”*aeiou] r finds strings 'countbr', 'countcr', etc. but not 'countar', 'counter’, etc.

Within a list, the "-" character is used to specify a range, so that a-z represents all characters between "a" and "z",
inclusive.
If you want "-" itself to be a member of a class, put it at the start or end of the list, or precede it with a backslash.

If youwant '] ', you may place it at the start of list or precede it with a backslash.
Examples:

[-az] matches 'a', 'z' and '-'

[az-] matches 'a', "z"' and '-'

[a\-z] matches 'a', 'z' and '-'

[a-z] matches all twenty six small characters from 'a' to 'z
[\n-\x0D] matches any of #10,#11,#12,#13.

[\d-t] matches any digit, '-" or 't"'.

[1-a] matches any char from '] '.."a".

Metacharacters

Metacharacters are special characters which are the essence of regular expressions. There are different types of
metacharacters, described below.

Metacharacters - Line separators

~ - start of line

$ - end of line

\A - start of text

\z - end of text

. - any character in line

Examples:

~PORTA - matches string * PORTA ‘ only if it's at the beginning of line
PORTAS - matches string * PORTA * only if it's at the end of line

~PORTAS - matches string * PORTA * only if it's the only string in line
PORT . r - matches strings like ‘PORT2’, ‘PORTE’, ‘PORT1’ and so on

The “~” metacharacter by default is only guaranteed to match beginning of the input string/text, and the “s$~
metacharacter only at the end. Embedded line separators will not be matched by ~ or “s”.

You may, however, wish to treat a string as a multi-line buffer, such that the »~” will match after any line separator within
the string, and “ s will match before any line separator.

Regular expressions works with line separators as recommended at http://www.unicode.org/unicode/reports/tr18/

109 MikroElektronika

mikoBasic PRO for dsPIC30/33 and PIC24

Metacharacters - Predefined classes

\w - an alphanumeric character (including "_")
\W - a nonalphanumeric character

\d - a numeric character

\D - a non-numeric character

\'s - any space (same as [\ t\n\r\f])

\ S - a non space

You may use \w, \d and \s within custom character classes.
Example:

routi\de - matches strings like 'routile', 'routiée' and soon, butnot 'routine’, "routime' and
so on.

Metacharacters - Word boundaries

A word boundary ("\b") is a spot between two characters that has an alphanumeric character ("\w") on one side,
and a nonalphanumeric character (" \W") on the other side (in either order), counting the imaginary characters off the
beginning and end of the string as matching a "\w".

\b - match a word boundary)
\B - match a non-(word boundary)

Metacharacters - Iterators

Any item of a regular expression may be followed by another type of metacharacters - iterators. Using this
metacharacters,you can specify number of occurences of previous character, metacharacter or subexpression.

* - zero or more (“greedy”), similar to {0,}

+ - one or more (“greedy”), similar to {1,}

? - zero or one (“greedy”), similar to {0,1}

{n} - exactly n times (“greedy”)

{n,} - atleast n times (“greedy”)

{n,m} - at least n but not more than m times (“greedy”)
*2 - zero or more (“non-greedy”), similar to {0,}?

+7? - one or more (“non-greedy”), similar to {1,}?

22 - zero or one (“non-greedy”), similar to {0,1}?

{n}? - exactly n times (“non-greedy”)

{n,}? - atleast n times (“non-greedy”)

{n,m}? - at least n but not more than m times (“non-greedy”)

So, digits in curly brackets of the form, {n,m}, specify the minimum number of times to match the item n and the
maximum m. The form {n} is equivalent to {n,n} and matches exactly n times. The form {n, } matches n or more
times. There is no limit to the size of n or m, but large numbers will chew up more memory and slow down execution.

If a curly bracket occurs in any other context, it is treated as a regular character.

MikroElektronika 110

mikroBasic PRO for dsPIC30/33 and PIC24

Examples:

count.*r B-matches strings like 'counter', 'countelkijdflkj9r' and 'countr'’

count.+r - matches strings like 'counter', 'countelkjdflkj9r' butnot 'countr’

count. ?r - matches strings like 'counter', 'countar' and 'countr' butnot 'countelkj9r’
counte{2}r - matches string 'counteer'

counte{2, }r - matches strings like 'counteer', 'counteeer', 'counteeer' etc.
counte{2,3}r - matches strings like 'counteer', or 'counteeer' but not 'counteeecer’

A little explanation about "greediness". "Greedy" takes as many as possible, "non-greedy" takes as few as possible.
For example, 'b+' and 'b* ' applied to string 'abbbbe' return 'bbbb', 'b+?' returns 'b', 'b* 2" returns empty
string, 'b{2,3}?"' returns 'bb"', 'b{2,3} ' returns 'bbb'.

Metacharacters - Alternatives

You can specify a series of alternatives for a pattern using " | " to separate them, so that bit|bat|bot will match
anyof "bit", "bat", or "bot" in the target string as would "b (i |a|o) t) ". The first alternative includes everything
from the last pattern delimiter (" (", " [", or the beginning of the pattern) up to the first " | ", and the last alternative
contains everything from the last " | " to the next pattern delimiter. For this reason, it's common practice to include
alternatives in parentheses, to minimize confusion about where they start and end.

Alternatives are tried from left to right, so the first alternative found for which the entire expression matches, is the
one that is chosen. This means that alternatives are not necessarily greedy. For example: when matching rou | rout
against "routine", only the "rou" part will match, as that is the first alternative tried, and it successfully matches the
target string (this might not seem important, but it is important when you are capturing matched text using parentheses.)
Also remember that "|" is interpreted as a literal within square brackets, so if you write [bit|bat|bot], you're really
only matching [biao|].

Examples:

rou (tine|te) - matches strings 'routine' or 'route'.

Metacharacters - Subexpressions

The bracketing construct (...) may also be used for define regular subexpressions. Subexpressions are numbered
based on the left to right order of their opening parenthesis. The first subexpression has number ‘1’

Examples:

(int) {8,10} matches strings which contain 8, 9 or 10 instances of the ‘int’
routi ([0-9] |a+) e matches ‘routile’, ‘routile’ , ‘routine’, ‘routinne’, ‘routinnne’ efc.

Metacharacters - Backreferences
Metacharacters \1 through \ 9 are interpreted as backreferences. \ matches previously matched subexpression #.
Examples:

(.)\1+ matches ‘aaaa’ and ‘cc’.

(.+)\1+ matches ‘abab’ and ‘123123’
(['71?) (\d+)\1 matches “13” (in double quotes), or ‘4’ (in single quotes) or 77 (without quotes) etc.

m MikroElektronika

mikoBasic PRO for dsPIC30/33 and PIC24

Keyboard Shortcuts

Below is a complete list of keyboard shortcuts available in mikroBasic PRO for dsPIC30/33 and PIC24 IDE.

IDE Shortcuts Advanced Editor Shortcuts
F1 Help Ctrl+Space Code Assistant
Ctrl+N New Unit Ctrl+Shift+Space | Parameters Assistant
Ctrl+O Open Ctrl+D Find Declaration
Ctrl+Shift+O Open Project Ctri+E Incremental Search
Ctrl+Shift+N New Project Ctrl+L Routine List
Ctrl+K Close Project Ctrl+G Goto Line
Ctrl+F4 Close unit Ctrl+J Insert Code Template
Ctrl+Shift+E Edit Project Ctrl+Shift+. Comment Code
Ctrl+F9 Build Ctrl+Shift+, Uncomment Code
Shift+F9 Build All Ctrl+number Goto Bookmark
Ctrl+F11 Build And Program Ctrl+Shift+tnumber | Set Bookmark
Shift+F4 View Breakpoints Ctrl+Shift+l Indent Selection
Ctrl+Shift+F5 Clear Breakpoints Ctrl+Shift+U Unindent Selection
F11 Start mE Programmer TAB Indent Selection
Ctrl+Shift+F11 Project Manager Shift+TAB Unindent Selection
F12 Options Alt+Select Select Columns
Alt + X Close mikroBasic PRO for Ctri+Alt+Select Select Columns

dsPIC30/33 and PIC24 Alt + Left Arrow | Fold Region (if available)

Basic Editor Shortcuts Alt + Right Arrow | Unfold Region (if available)
F3 Find, Find Next Ctrl+Alt+L Convert Selection to Lowercase
Shift+F3 Find Previous Ctrl+Alt+U Convert Selection to Uppercase
Alt+F3 Grep Search, Find In Files Ctrl+AIt+T Convert to Titlecase
Ctri+A Select Al Ctri+T USART Terminal
Cri+C Copy ctri+Q Quick Converter
Ctrl+F Find mikrolCD Debugger and Software Simulator
Ctrl+R Replace Shortcuts
Ctrl+P Print F2 Jump To Interrupt
Ctrl+S Save Unit F4 Run to Cursor
Ctrl+Shift+S Save All F5 Toggle Breakpoint
Ctrl+V Paste F6 Run/Pause Debugger
Ctrl+X Cut F7 Step Into
Ctrl+Y Delete Entire Line F8 Step Over
Ctrl+z Undo F9 Start Debugger
Ctrl+Shift+Z Redo Ctrl+F2 Stop Debugger
MikroElektronika

12

mikroBasic PRO for dsPIC30/33 and PIC24

Ctrl+F5 Add to Watch List

Ctrl+F8 Step Out

Alt+D Disassembly View

Shift+F5 Open Watch Window
Ctrl+Shift+A Show Advanced Breakpoints

113

mikoBasic PRO for dsPIC30/33 and PIC24

CHAPTER 3

mikroBasic PRO for dsPIC30/33
and PIC24 Command Line Options

Usage: mBdsPIC.exe [-<opts> [-<opts>]] [<infile> [-<opts>]] [-<opts>]]
Infile can be of * .mbas, *.mcl and *.pld type.

The following parameters and some more (see manual) are valid:

-P <devicename> : MCU for which compilation will be done.

-FO <oscillator>: Set oscillator [in MHz].

-SP <directory>:Add directory to the search path list.

-N <filename> : Output files generated to file path specified by filename.
-B <directory>: Save compiled binary files (* .mc1) to ‘directory’.
-0 : Miscellaneous output options.

-DBG : Generate debug info.

-1 : Check and rebuild new libraries.

-DL : Build all files as libraries.

-UICD : ICD build type.

-EH <filename> : Full EEPROM HEX file name with path.

-Y : Dynamic link for string literals.

-LHF : Generate Long hex format.

-GC : Generate COFF file.

-PF : Project file name.

-RA : Rebuild all sources in project.

Example:

mBdsPIC.exe -MSF -DBG -p30F4013 -Y -DL -011111114 -fo80 -N”C:\Lcd\Lcd.mbpds” -SP”C:\
Program Files\Mikroelektronika\mikroBasic PRO for dsPIC\Defs”
-SP”C:\Program Files\Mikroelektronika\mikroBasic PRO for dsPIC\Uses” -SP”C:\
Led\” " Lib Math.mcl” “_ Lib MathDouble.mcl”
" __Lib System.mcl” “_ Lib Delays.mcl” “_ Lib LcdConsts.mcl” “_Lib Lecd.
mcl” “Lcd.mbas”

MikroElektronika 14

mikroBasic PRO for dsPIC30/33 and PIC24

Parameters used in the example:

-MsFE: Short Message Format; used for internal purposes by IDE.

-DBG: Generate debug info.

-p30F4013: MCU 30F4013 selected.

-v: Dynamic link for string literals enabled.

-DL: All files built as libraries.

-011111114: Miscellaneous output options.

-f080: Set oscillator frequency [in MHz].

-N”C:\Lcd\Lcd.mbpds” -SP”C:\Program Files\Mikroelektronika\mikroBasic PRO for
dspPIC\Defs”: Output files generated to file path specified by filename.

-SP”C:\Program Files\Mikroelektronika\mikroBasic PRO for dsPIC\Defs”:Add directory
to the search path list.

-SP”C:\Program Files\Mikroelektronika\mikroBasic PRO for dsPIC\Uses”:Add directory
to the search path list.

-SP”C:\Lcd\”: Add directory to the search path list.

“Lcd.mbas” Y Lib Math.mcl” ™ Lib MathDouble.mcl” “ Lib System.mcl” ™ TLib

Delays.mcl” Lib LedConsts.mel” “ Lib Led.mel”: Specify input files.

115 MikroElektronika

mikoBasic PRO for dsPIC30/33 and PIC24

GCHAPTER 4

mikrolCGD (In-Circuit Debuggyer}

Introduction

The mikrolCD is a highly effective tool for a Real-Time debugging on hardware level. The mikrolCD debugger
enables you to execute the mikroBasic PRO for dsPIC30/33 and PIC24 program on a host dsPIC30/33 or PIC24
microcontroller and view variable values, Special Function Registers (SFR), RAM, CODE and EEPROM memory along
with the mikrolCD code execution on hardware.

MikroElektronika 116

mikroBasic PRO for dsPIC30/33 and PIC24

If you have appropriate hardware and software for using the mikrolCD select mikrolCD Debug Build Type before
compiling the project.

Project Settings @
Sl Device -
=g MCU Clack. -l
Frequency: MHz Choose ICD Debug
type if you want
to use mikroIlCD
= Buildf Debugger Twpe I debug.

EBuild Type |
) Release (%) ICD Debug

?

Debugger
) Software (&) mikraICD

Now, compile the project by pressing Ctrl + F9, or by pressing Build Icon *ﬁs on Build Toolbar.

Run the mikrolCD by selecting Run » Start Debugger from the drop-down menu or by clicking the Start Debugger
Icon Eh . Starting the Debugger makes more options available: Step Into, Step Over, Run to Cursor, etc. Line that is

to be executed is color highlighted (blue by default). There is also notification about the program execution and it can
be found in the Watch Window (yellow status bar). Note that some functions take more time to execute; execution is
indicated with "Running..." message in the Watch Window Status Bar.

® X in:
HELI: Watch Values B

23
] . text = "mikroElektronika" Eh' EJJ E?H o0 &y oo 9l E a

2 & Add 3 Remove < Properties kg AddAll g Remove Al
° X i

WEEL_ M () Select variable from list:

e 5 Lod Crd(LCD CLEAR) P -
= . Led Cmd | LCD CURSOR_OFF)

Search for variable by assembly name:
_text !1

Peripheral: Freeze
Led Chr(l, i, text[i-1])

. 30Tfori=0tol?

@ next i Mame Yalue Address
end. FPORTE a 0x02C8
TRISE 1] Ox02CE
LATE a Ox02CH
ADPCFG 000 00 Ox02A45
ket {.} 00300
Running...

Related topics: mikrolCD Debugger Example, Debug Windows, Debugger Options

111 MikroElektronika

mikoBasic PRO for dsPIC30/33 and PIC24

mikrolCD Debugger Options

Debugger Options
- Function | Toolbar
Name Description
Key Icon
Start Debugger Starts Debugger. F9 E—h
Run/Pause Debugger | Run/Pause Debugger. F6 EDJ
Stop Debugger Stop Debugger. Ctrl + F2 E—E

Executes the current program line, then halts. If the executed
Step Into program line calls another routine, the debugger steps into the F7 g{]
routine and halts after executing the first instruction within it.

Executes the current program line, then halts. If the executed
program line calls another routine, the debugger will not step into

[t
Step Over it. The whole routine will be executed and the debugger halts at F8 i
the first instruction following the call.
Executes all remaining program lines within the subroutine. The
debugger halts immediately upon exiting the subroutine. this
Step Out option is provided with the PIC18 microcontroller family, but not F8 e
with the PIC16 family.
Run To Cursor Executes the program until reaching the cursor position. Ctrl + F8 o]
Toggle Breakpoint Toggle breakpoints option sets new breakpoints or removes those F5 =

already set at the current cursor position.

Related topics: Run Menu, Debug Toolbar

MikroElektronika 118

mikroBasic PRO for dsPIC30/33 and PIC24

mikrolCD Debugger Example

Here is a step-by-step mikrolCD Debugger Example.

Step No. 1

First you have to write a program. We will show how the mikrolCD works using this example:

program Lcd Test

' LCD module connections

dim LCD RS as sbit at LATDO bit
dim LCD EN as sbit at LATDl bit
dim LCD D4 as sbit at LATBO bit
dim LCD D5 as sbit at LATBl bit
dim LCD D6 as sbit at LATB2Z bit
dim LCD D7 as sbit at LATB3 bit

dim LCD RS Direction as sbit
dim LCD EN Direction as sbit
dim LCD D4 Direction as sbit
dim LCD D5 Direction as sbit
dim LCD D6 Direction as sbit
dim LCD D7 Direction as sbit
' End LCD module connections

dim text as char[1l6]
i as byte

main:
ADPCFG = OxFFFF
text = “mikroElektronika”

Led Init ()
Led Cmd (LCD CLEAR)
Led Cmd (LCD CURSOR_OFF)

for i = 0 to 17
Led Chr(1, i, text[i-1])
next i
end.

at
at
at
at
at
at

TRISDO bit
TRISDl bit
TRISBO bit
TRISBL bit
TRISB2 bit
TRISB3 bit

19

mikoBasic PRO for dsPIC30/33 and PIC24

After successful compilation and MCU programming press F9 to start the mikrolCD. After the mikrolCD initialization a

blue active line should appear.

= main:

= za

= 3 text = "mikroElektronika'
° . Led Init()

° . Leod Cmd | LCD CLEAR)

° - Led Cmd{ LCD CURSOR_OFF)

for i = 0 to 17
 Led Chril, i, text[i-11)
next i

i

end.

Wiatch Values

Zh B} By | 20 @ a2 eX = Ju
-!‘i Add ¥ Remove < Properties lyg Add Al

Select wariable from list:

text

Search for variable by aszembly name:
_ltext

Peripherals Freeze

Marne Yalug Address
PORTE 1] 0x02C3
TRISE a Ox02C6
LATE 1] 0x02CH
ADPCFG 0x00 00 Ox0245

+ kext 1..F 00500

I Remove All

PC= 0x0002E0 0.00us

We will debug the program line by line. Pressing [F8] we are executing code line by line. However, it is not recommended
that user does not use Step Into [F7] and Step Over [F8] over Delays routines and routines containing delays. Instead
use Run to cursor [F4] and Breakpoints functions.

All changes are read from MCU and loaded into Watch Window. Note that TRISB changed its value from 255 to 0.

e) in:
R Watch Walues &
° . LDPCFG = OxFFFF m— Y -
24 2 2 "mikroElektronika® EZ} SRS S fip G E “
| -!‘a Add s Remove <) Properties I Add All L. Remove All
e ; i
Led Init() Select wariable from list:
° : Led Cmd{ LCD CLELR) cext -
r i Lod Cmd (LCD_CURSOR_OFF) Search for vaniable by aszembly name:
_ltext !j!
L 20 for i =0 to 17 -
. Peripheral: Freeze
= 7 Led Chr(l, i, text[i-113 (.
@ . next i Mame Yalue Address
end. PORTE o 0%02C8
TRISE 1] 0x02CaE
LATE 1] Ox02CH
ADPCFG 0:xFF FF 0x0245
+ kext {.} 0x0500
PC= 0x000254 0.10us
MikroElektronika

120

mikroBasic PRO for dsPIC30/33 and PIC24

Step Into [F7], Step Over [F8] and Step Out [CtrI+F8] are mikrolCD debugger functions that are used in stepping
mode. There is also a Real-Time mode supported by the mikrolCD. Functions that are used in the Real-Time mode
are Run/Pause Debugger [F6] and Run to cursor [F4]. Pressing F4 executes the code until the program reaches the
cursor position line.

e) im:
TS Wfatch Walues B
e 3 ADPCFG = OXFFFF = = o -
& . text = "mikroElektronika' =% Eh E?H w0 o 09 9T 5 L]
| w Add 3 Remove <) Properties Iy Add All 1L Remove All
@ . i
WEEL M () Select variable from list:

text -

° - Led Cmd | LCD CLELR)
L [UF.

Search for variable by azzembly name:
_text !41

Peripherals Freeze
Led Chr(l, i, text[i-1])

= 30Tfori=0tol?

next i Marme Yalue Address

@
end. PORTE a 0x02C8
TRISE 1] 0x02CE
LATE 1 Ox02CH
ADPCFG 0xFF FF Ox0248
+ kext {.} 00500

PC= 0x0002D4 65,55 ms

Run(Pause) Debugger [F6] and Toggle Breakpoints [F5] are mikrolCD debugger functions that are used in the Real-
Time mode. Pressing F5 marks the line selected by the user for breakpoint. F6 executes code until the breakpoint
is reached. After reaching the breakpoint Debugger halts. Here in our example we will use breakpoints for writing
“mikroElektronika” on Lcd char by char. Breakpoint is set on Lcd_Chr and the program will stop every time this function
is reached. After reaching breakpoint we must press F6 again to continue the program execution.

3) T
] frains Wiatch Walues [
7 ADPCFG = OxFFFF
ENENE @ CRNES
@ . text = "mikroElektronika” B B E 00 @0 oo ol £ >
2 w Add 3¢ Remove <U) Properties I AddAll L Remove All
° ; i
LEHEL IR (] Select wariable from list:
° - Lod Cmd { LCD CLEAR) f— -
r : Led Cmd(LCD_CURZOR OFF) Search for varable by assembly narme:
_tent !4'!
= a0 for i = 0 to 17 .
: - - Feripherals Freeze
G 31 . Le hr (1, i, text[i-1]) [
e next Mame Yalue Address
end. PORTE 1] Ox02CE
TRISE a 0x02C6
LATE 12 Ox02CA
ADPCFG 0xFF FF Ox02485
+ kext 1. 0x0500
PC= 0x0002E2 71.06 ms

121 MikroElektronika

mikoBasic PRO for dsPIC30/33 and PIC24

Breakpoints are divided into two groups: hardware and software breakpoints. The hardware breakpoints are placed
in the MCU and provide fastest debugging. Number of hardware breakpoints is limited (4 for PIC24 and dsPIC33
family, for dsPIC30 family this number depends on the MCU used). If all hardware brekpoints are used, then the next
breakpoint will be software breakpoint. These breakpoints are placed inside the mikrolCD and simulate hardware
breakpoints. Software breakpoints are much slower than hardware breakpoints. These differences between hardware
and software breakpoints are not visible in the mikrolCD software but their different timings are quite notable.That's why
it is important to know that there are two types of breakpoints.

The picture below demonstrates step-by-step execution of the code used in above mentioned examples.

. FFFFRREFER R

Common Errors:

- Trying to program the MCU while the mikrolCD is active.

- Trying to debug Release build version of the program with the mikrolCD debugger.

- Trying to debug program code which has been changed, but has not been compiled and programmed into the MCU.

- Trying to select line that is empty for Run to cursor [F4] and Toggle Breakpoints [F5] functions.

- Trying to debug MCU with mikrolCD while Watch Dog Timer is enabled.

- Trying to debug MCU with mikrolCD while Power Up Timer is enabled.

- Trying to Step Into [F7] the mikroBasic PRO for dsPIC30/33 and PIC24 Library routines. Use Step Over [F8]
command for these routines.

- It is not possible to force Code Protect while trying to debug MCU with mikrolCD.

- Trying to debug MCU with mikrolCD with pull-up resistors set to ON on RB6 and RB7.

Related topics: mikrolCD Debugger, Debug Windows, Debugger Options

MikroElektronika 122

mikroBasic PRO for dsPIC30/33 and PIC24

mikrolCD Debugger Windows

Debug Windows

This section provides an overview of available Debug Windows in mikroBaisc PRO for dsPIC30/33 and PIC24:

- Breakpoints Window

- Watch Values Window

- RAM Window

- Stopwatch Window

- EEPROM Watch Window
- Code Watch Window

Breakpoints Window

The Breakpoints window manages the list of currently set breakpoints in the project. Doubleclicking the desired
breakpoint will cause cursor to navigate to the corresponding location in source code.

In situations when multiple breakpoints are used within the code, it is sometimes handy to enable/disable certain
breakpoints. To do this, just check/uncheck the desired breakpoint using the checkbox in front of the breakpoint’'s
name.

Breakpoints 3]
Enable/Line File Mame
27 LedBlinking.mbas
34 LedBlinking.mbas
36 LedBlinking.mbas
a7 LedElinking. mbas
39 LedBlinking.mbas

Watch Values Window

Watch Values Window is the main Debugger window which allows you to monitor program execution. To show the
Watch Values Window, select Debug Windows > Watch from the View drop-down menu.

The Watch Values Window displays variables and registers of the MCU, with their addresses and values. Values are
updated along with the code execution. Recently changed items are coloured red.

There are two ways to add variable/register into the watch list:

- by its real name (variable’s name in program code). Just select wanted variable/register from Select
variable from list drop-down menu and click the = &= add button.
- by its name ID (assembly variable name). Simply type name ID of the variable/register you want to

display into Search for variable by assemby name box and click the = = add button.

123 MikroElektronika

mikoBasic PRO for dsPIC30/33 and PIC24

Also, it is possible to add all variables in the Watch Values Window by clicking | k4 addail button.

To remove a variable from the Watch Values Window, just select the variable that you want to remove and then click
the # remove button, or press the Delete key.

It is possible to remove all variables from the Watch Values Window by clicking ¥ Remeveall button.

You can also expand/collapse complex variables i.e. struct type variables, strings, etc, by clicking the appropriate
button ([+] or[=]) beside variable name.

Watch Yalues 3]
Eh B 55 (20 % ov ol & [5 [0
o Add 3¢ Remove <) Properties lyg AddAll Ll Remove All
Select variable from list:
WEEGL v|
Search for variable by azsembly name:
|_WREGT g
Mame Walue Addrass
ADPCFG 0xFF FF Ox02 45
= bxtd £} %0308
[w' Dx0E0G
[1] i %0309
2] i Dx0E04
[3] ¥ %0308
4] o' D080
[5] (2 %0300
[&] o 0x0E0E
i 3 00834
WREG 005 34 00000
WREGD 2100 00000
WREGL 1 0x0002
PC= 0x00025E 9655, 99 ms

Double clicking a variable or clicking the < rroperties button opens the Edit Value window in which you can assign a new
value to the selected variable/register. Also, you can choose the format of variable/register representation between

decimal, hexadecimal, binary, float or character. All representations except float are unsigned by default. For signed
representation click the check box next to the Signed label.

(D] Edit Value: PORTB
|]

Representakion

(&) Dec (O Hex JBin C)Float) Char

[signed 0K Cancel

An item's value can also be changed by double clicking item's value field and typing the new value directly.

MikroElektronika 124

mikroBasic PRO for dsPIC30/33 and PIC24

RAM Window

The RAM Window is available from the drop-down menu, View » Debug Windows > RAM.

The RAM Window displays the map of MCU’s RAM, with recently changed items colored red. The user can edit and
change the values in the RAM window.

mikrolCD Specific: RAM window content will be written to the MCU before the next instruction execution.

RAM |

oulm|02|03|o4|ns|os|o7|oalnglon|oB|oc|nD|oE|uF|nSCII ~

o700y 0o 00 i} o0 o1 0o oo i} ol | 0o oo ili} oo oo oo O0 | v
o7a0) 0o o0 i} o0 o1 0o oo i} ol | 0o oo ili} oo oo oo O0 | v
07AD| OO 00 i} o0 o1 0o oo i} ol | 0o oo ili} oo oo oo O0 | v
O7E0| 0O 00 00 OO0 0D 00 OO0 |00 00 00 00 00 00 00 00 | @0 | ceeeeeaeaeiaenns
70| 00 | 00 00 0O 00O 0O 00 00 00 00 00 00 00 00 | 00 | OO0 cceereaeaeeeaan
o700f 00 | 00 00 0O 00 0O 00 00 00 0O 00 00 00 00 00 00 eeeriaiaaaiiaaas
O7EQ| 0O 00 00 00 00 00 00 |00 00 00 00 00 00 00 00 | 00 | ceeeenaaiaaiaans
O7F0| 0O 00 00 00 00 00 00 |00 00 00 00 00 00 00 00 | 00 | coeeeeeaeaaiaann
0300| 4C B3 B4 34 62 | 69 | 74 00 6D €9 6B | 72 | 6F 45 00 6D | Led4bit.mikroE
0s10| 69 BB 72 6F | 45 | &C 65 6B 74 72 6F | 6E | 63 6B 61 00 | ikroElektronike
mazn| 45 el 73 | 79 64 73 S0 49 | 43 3 00 00 01 | o0 | oc | 03 EasydsPIC4.. s
0g30| 00 | OO 00 OO0 O 02 A6 02 OO0 OO0 15 02z 00 OO0 3® Ol

03404 00 00 i} o0 o1 0o oo i} ol | 0o oo ili} oo oo oo O0 | v
0504 0o o0 i} o0 o1 0o oo i} ol | 0o oo ili} oo oo oo O0 | v

0gE0| 00 00 00 00 0D 00 | 0O |00 00 00 90 00 00 00 00 | @0 | ceeeeeaeaeieenns

Stopwatch Window

The Software Simulator Stopwatch Window is available from the drop-down menu, View > Debug Windows »
Stopwatch.

The Stopwatch Window displays a Current Count of cycles/time since the last Software Simulator action.
Stopwatch measures the execution time (number of cycles) from the moment Software Simulator has started and can
be reset at any time.

Delta represents the number of cycles between the lines where Software Simulator action has started and ended.

Watch Clock X
Cyiles: Time:
Current Count; |2,103,943,273 105.20 5
Delka: 80,881,413 4044 .07 ms
Stopwatch: 2,103,943,273 105197.16 ms
Reset To Zero
Clock: a0 MHz

125 MikroElektronika

mikoBasic PRO for dsPIC30/33 and PIC24

Notes:
- The user can change the clock in the Stopwatch Window, which will recalculate values for the latest specified
frequency.

- Changing the clock in the Stopwatch Window does not affect actual project settings — it only provides a simulation.
- Stopwatch is available only when Software Simulator is selected as a debugger.

EEPROM Watch Window

Note : EEPROM Watch Window is available only when mikrolCD is selected as a debugger.

To show the EEPROM Watch Window, select Debug Windows » EEPROM from the View drop-down menu.
The EEPROM Watch Window shows current content of the MCU's internal EEPROM memory.

There are two action buttons concerning the EEPROM Watch Window:

Read EEPROM - Reads data from MCU's internal EEPROM memory and loads it up into the EEPROM window.

Write EEPROM - Writes data from the EEPROM window into MCU's internal EEPROM memory.

EEPROM Watch =
Read EEPROM Write EEPROM
Uulm|Uz|ua|c|4|Usluslwlus|09|UA|UB|UC|UD|UE|UF|ASCII |ﬁ

oa| FF | FF | FF | FF FF | FF | FF | FF FF | FF | FF | FF | FFFF | FF | FF

0330| FF | FF | FF | FF FF | FF | FF | FF FF | FF | FF | FF | FF FF | FF | FF

os0| FF | FF | FF | FF FF | FF | FF | FF FF | FF | FF | FF | FF FF | FF | FF

0sso| FF | FF | FF | FF FF | FF | FF | FF FF | FF | FF | FF | FFFF | FF | FF

osea| FF | FF | FF | FF FF | FF | FF | FF FF | FF | FF | FF | FFFF | FF | FF

os0| FF | FF | FF | FF FF | FF | FF | FF FF | FF | FF | FF | FF FF | FF | FF

oss0| FF | FF | FF | FF FF | FF | FF | FF FF | FF | FF | FF | FF FF | FF | FF

030| FF | FF | FF | FF FF | FF | FF | FF FF | FF | FF | FF | FF FF | FF | FF

030\ FF | FF | FF | FF FF | FF | FF | FF FF | FF | FF FF | FF FF | FF | FF

osa| FF | FF | FF | FF FF | FF | FF | FF FF | FF | FF | FF | FF FF | FF | FF

03co| FF | FF | FF | FF FF | FF | FF (FF FF | FF | FF FF | FF FF | FF | FF

0300| FF | FF | FF | FF FF | FF | FF | FF FF | FF | FF | FF | FFFF | FF | FF

osEa| FF | FF | FF | FF FF | FF | FF | FF FF | FF | FF | FF | FFFF | FF | FF

osFo| FF | FF | FF | FF FF | FF | FF | FF FF | FF | FF | FF | FF FF | FF | FF

0400 00 00 00 00 0O | OO | 00 | 00 00 | 00 00 00 00 00 | 00 | 00 e

04104 00 | OO (OO OO OO | OO | OO OO OO OO OO OO OO0 OO0 |00 oo

04204 o0 | 00 | 0O 00 @O0 | OO | 0O 00 00 OO |00 00 00 00 | 00 0d

0430 o0 | OO | 0O 00 OO | OO | OO 0O OO | OO0 | Q0 00 OO0 00 | 00 02

O440f 00 | OO | 0O 00 00 | OO0 | OO 0O OO OO0 | Q0 0O OO0 00 | 00 02

04504 o0 | OO (OO OO OO OO OO OO OO OO OO OO OO0 OO0 00 oo

0460 00 | 00 |00 00 00 | OO | 0O 00 00 OO | 00 00 00 00 | 00 0d

0470 o0 | OO | 0O 00 OO | OO0 | OO 0O OO0 | OO0 | Q0 00 00 00 | 00 02

O480f 00 | 00 | 00 00 00 | OO0 | 0O 00 00 | 00 | Q0 00 00 00 | 00 00 ceeeieeeiaaeian

0450 00 00 00 00 0O | OO | 00 | 00 00 00 00 00 00 00 | 00 | 00 | eeeeeeeeeaan

04A00 OO0 00 00 00 00 | OO0 OO0 00 00 00 00 00 00 00 | OO0 | OO0 | cevvevennnnns

ndrnd on | nn o nn o an L onn Lo onn o an L onn Lonn L onn oo o an Lo An Lm0 | e s
STATUS: Idie

MikroElektronika 126

mikroBasic PRO for dsPIC30/33 and PIC24

Code Watch Window

Note: Code Watch Window is available only when mikrolCD is selected as a debugger.

To show the Code Watch Window, select Debug Windows » Code from the View drop-down menu.

The Code Watch Window shows code (hex format) written into the MCU.

There is one action button concerning the Code Watch Window:

- - Reads code from the MCU and loads it up into the Code Window. Code reading is resources

consuming operation so the user should wait until the reading is over.

Also, you can set an address scope in which hex code will be read.

CODE Watch =

Address Scope
| ooonao || oogaao| |]
0o | 02 | 04 06 08 04 0c 0E | ASCIT ~
0200 | A7SOI0 | ABZECA | 470060 | AG4010 | ASO2CA | A74010 | AB02CA | 20ssco | <DLE=PSE" .G <DLES
0210 | 460010 | ASOZDE | A70010 | ASOZDG | O7FF9G | 470060 | AG3010 | ASe2CA | <DLE= .| O <5T:" <DL
0220 | 473010 | ABGZCA | 470060 | AGZOI0 | AS42CA | A7Z010 | AB42CA | 470060 | <DLE=DFEbT .G <DL
0230 | 461010 | ASZ2CA | A7IOND | ABZ2CA | 470060 | AGOOI0 | AS02CA | A70010 | <DLE> <DLE=|E"@ <DI
0240 | AG02CA | 2088C0 | AGODID | AGOZDE | A70010 | ASO02DG | OFFFFC | 2nsscn | E <5TW:" A "<SPCs <D
0250 | As0010 | 370002 | O7FFe4 | 370001 | OFFFES | FASOO0 | 060000 | FAOO0Z | <DLE: .| <STH: Fdi<
0260 | 37000F | zo0s0n | SFEF4O | 370019 | 200000 | SFBF4 | 370016 | 200940 | <50» .7, <BS:<SPC: €
0270 | 9FBF40 | 370013 | 200040 | SFBF40 | 370010 | 200800 | SFBF4 | F7000D | @ &F <DC3: T @ <CR:
0280 | 97B@4E | E10061 | G2FFEE | O7BB4E | E1006Z | G2FFEE | O7BR4E | Elooe3 | M —a.AT§2N .—b.a
0290 | 32FFEE | 97BE4E | E10064 | G2FFEE | S7FFFO | 97BE3E | GSOO0E1 | 570068 | (92N —d.AT§2ayr:
0za0 | 402010 | SFEF40 | 7EIFE0 | O7FF9E | BI002F | 2088CO | Al0010 | EFzo0n0 | <DLE: €@ @€ US>
0260 | 980700 | 97BGAE | 470060 | 408010 | EO0410 | 32000C | 97BGAE | 470060 | . <BELL:"® ,— .G <l
ozco | 402010 | 7e4010 | FEEOOO0 | 7EiFe0 | O7FF32 | B1002F | 200011 | 470060 | <DLE> €@ <DLE: @x .1
0200 | 408810 | SYFFEF | 2088CO | AOODIO0 | FASOOO | 060000 | FAODOZ | EFz000 | <DLE: "@T§T A T<3RC
02ED | 984700 | S0400E | E10468 | 310008 | 2001C0 | 7EIFe0 | O7FFFE | B1002F | G <303 @O h <EQT:
02F0 | 0FFF31 | B3CO11 | 470060 | 40CE10 | 37FFF4 | FASOOO0 | 060000 | FAODOZ | 1¥<BELL: <DC1m A3
0300 | EFzo0 | 984700 | S0400E | E10468 | 310009 | 200180 | 7EIFE0 | O7FFe7 | . <SPCH. 67 <30:@C
0310 | B100ZF | O7FF20 | B3CO11 | 470060 | 40CB10 | 37FFF4 | FASOO0 | 060000 | J.E <SPC: §BELLE <C
0320 | 2086EF | ZOFFFD | B7A020 | 200000 | B7AO34 | 200040 | EB72044 | FAOOOD | §<SPC @ §eSPCE <SF
0330 | 02030% | 000000 | ZFFFRO | B7AZAG | OFFFID | 200000 | 7&IFE0 | OFFF4F | @ <ETH=<STRE .. 89/
0340 | B100ZF | z0sein | 7eiFeO0 | 200060 | 7&IFeO0 | 200010 | 7&iFe0 | O7FFe7 | J.E <DLE> T<IRCHE <
0350 | B100GF | zomesn | 7EiFeO0 | 200060 | 7EIFEO0 | 200020 | 7&IFe0 | O7FFFF | 0.% O t=SPC: € <US:
0360 | BIOOSF | 200CCE | 273987 | EDZOOE | 3AFFFE | ED20I0 | 3AFFRC | 200010 | 0 .k E <FF»<SPCH 9
0370 | 781FE0 | O7FF3S | B1002F | 208700 | 7EIFE0 | 200010 | 7E1Fe0 | 200010 | € <USmx 5 §<BELL: [.+
0380 | 781FE0 | O7FFED | B1006F | 208810 | 7&IFAO0 | 200050 | 7&iFe0 | 200020 | € <USmxm$<BELLE o0 .:w
o)) 3
STATLS: Idle

121

mikoBasic PRO for dsPIC30/33 and PIC24

GHAPTER 9

MikroElektronika 128

mikroBasic PRO for dsPIC30/33 and PIC24

Software Simulator

The Source-level Software Simulator is an integral component of the mikroBasic PRO for dsPIC30/33 and PIC24

environment. It is designed to simulate operations of the Microchip dsPIC30/33 and PIC24 MCUs and assist the users
in debugging code written for these devices.

Upon completion of writing your program, choose Release build Type in the Project Settings window:

Project Settings 3]
Name: |p30F4013 v

=g MCU Clack -
Choose Release type }
if you want to use Frequency: £0.000000 | MHz

software simulator
1=l Build} Debugger Type -

EBuild Type
(%) Release () ICD Debug

Debugger

() Software () mikroICD

After you have successfuly compiled your project, you can run the Software Simulator by selecting Run > Start

Debugger from the drop-down menu, or by clicking the Start Debugger Icon Lb from the Debugger Toolbar.

Starting the Software Simulator makes more options available: Step Into, Step Over, Step Out, Run to Cursor, etc. Line
that is to be executed is color highlighted (blue by default).

Note: The Software Simulator simulates the program flow and execution of instruction lines, but it cannot fully emulate
dsPIC device behavior, i.e. it doesn’t update timers, interrupt flags, etc.

Related topics: Software Simulator Debug Windows, Software Simulator Debugger Options

129 MikroElektronika

mikoBasic PRO for dsPIC30/33 and PIC24

Software Simulator Debug Windows

Debug Windows
This section provides an overview of available Debug Windows in mikroBasic PRO for dsPIC30/33 and PIC24:

- Breakpoints Window

- Watch Values Window

- RAM Window

- Stopwatch Window

- EEPROM Watch Window
- Code Watch Window

Breakpoints Window

The Breakpoints window manages the list of currently set breakpoints in the project. Doubleclicking the desired
breakpoint will cause cursor to navigate to the corresponding location in source code.

In situations when multiple breakpoints are used within the code, it is sometimes handy to enable/disable certain
breakpoints. To do this, just check/uncheck the desired breakpoint using the checkbox in front of the breakpoint’s
name.

Breakpoints 3]
Enable/Line File Mame

27 LedBlirking.mbas

34 LedBlinking.mbas

36 LedBlinking.mbas

a7 LedBlinking. mbas

39 LedBlinking.mbas

Watch Values Window

Watch Values Window is the main Debugger window which allows you to monitor program execution. To show the
Watch Values Window, select Debug Windows > Watch from the View drop-down menu.

The Watch Values Window displays variables and registers of the MCU, with their addresses and values. Values are
updated along with the code execution. Recently changed items are coloured red.

There are two ways to add variable/register into the watch list:

- by its real name (variable's name in program code). Just select wanted variable/register from Select
variable from list drop-down menu and click the === add button.
- by its name ID (assembly variable name). Simply type name ID of the variable/register you want to

display into Search for variable by assemby name box and click the = = add button.

MikroElektronika 130

mikroBasic PRO for dsPIC30/33 and PIC24

Also, it is possible to add all variables in the Watch Values Window by clicking = &4 addail button.

To remove a variable from the Watch Values Window, just select the variable that you want to remove and then click
the = # remove button, or press the Delete key.

It is possible to remove all variables from the Watch Values Window by clicking & Remaveall button.

You can also expand/collapse complex variables i.e. struct type variables, strings, etc, by clicking the appropriate
button ([+] or [=]) beside variable name.

Watch Yalues 5]
E—?} EHJ E%] S0 o8] | @ F@ |
o Add I Remove <) Properties Iy AddAll kel Remove All
Select variable from list:
[wrEGL v|
Search for variable by assembly name:
|_WREGT (&)
Mare Walue Address
ADPCFG 0xFF FF Ox0285
= bxid £} 0x0508
[o] m' Dx080&
[1] i 00509
2] i M0E0A
[3] ¥ 00308
[4] o' M0E0C
[5] e 00500
[&] o Mx0R0E
i 3 00834
WREG 005 34 00000
WREGD 2100 00000
WREGT 1 00002
PC= 0x00028E 9655, 99 ms

Double clicking a variable or clicking the < rreperties button opens the Edit Value window in which you can assign a new

value to the selected variable/register. Also, you can choose the format of variable/register representation between
decimal, hexadecimal, binary, float or character. All representations except float are unsigned by default. For signed
representation click the check box next to the Signed label.

|E| Edit Value: PORTB
|]

Representation

() Dec O Hex C)Bin) Float O Char

[] signed oK Cancel

An item's value can also be changed by double clicking item's value field and typing the new value directly.

131 MikroElektronika

mikoBasic PRO for dsPIC30/33 and PIC24

RAM Window

The RAM Window is available from the drop-down menu, View » Debug Windows > RAM.

The RAM Window displays the map of MCU’s RAM, with recently changed items colored red. The user can edit and
change the values in the RAM window.

mikrolCD Specific: RAM window content will be written to the MCU before the next instruction execution.

RAM |

uulm|02|03|n4|05|us|o?|uslnglun|nB|nc|nD|DE|uF|ASCII |2

07800 00 | 00 00 00 0D 00 00 00 00 00 00 00 00 00 00 | 00 | coeeeeaeaeiaann
07900 00 00 00 00 0D 00 00 00 00 00 00 00 00 00 00 | 00 | coeeeeaaeaeiaann
o7AO| OO OO0 00 0O 0O | OO0 Q0 0D 00 00 00 00 00 00 | 00 | 00 ceeeeiieaeeaaaan
o780 00 00 00 | 0O 00 OO0 OO0 00 0O |00 00 | 00 00 00 00 00 | ceeeeeeeaaeaiaan
Oo7C0f 00 00 OO 00 OO | 00 00 00 00 00 00 00 00 | 00 00 | 00 ceaeeaeeeaeaaaen
o70Of 00 00 OO 00 OO | 00 00 00 00 00 00 00 00 | 00 00 | 00 ceaeaeeeaaaaaan
O7FEQ| 00 | 00 00 OO 0O OO0 OO0 |00 00 00 900 | 00 00 00 00 | A0 | ceeeeeeeaeieenns
OfFO| 00 | 00 00 00 00 00 00 00 00 00 00 00 00 00 00 | 00 | ceeeeeeaeaenienns
0500 4C 63 64 34 62 5] 74] [0 Y BB 7z 6F 45 oo g0 Lcd4bit.mikroE
os10| 69 BB 7z 6F 45 | 6C 65 66 74 Fis BF 6E 69 i} 6l oo ikroElektronike
0520 45 &1 73 79 64 73 50 49 43 34 oo oo o1 uli} o 03 EasydsPIC4. . < 1
0530 00 oo oo] 0z oz Al 0z] oo 13 0z] uli} 36 01

0340 0O | 00 00 OO0 00 00 OO0 |00 00 00 00 00 00 00 00 | 00 | oeeeeeaeeiaann
03s0f 00 0 00 00 | 00O 00 OO0 OO0 00 00 00 00 | 00 00 00 00 00 | ceeeeeeeaieaiaan

03e0f 00 0 00 00 | 0D 00 OO0 OO0 00 00 00 00 | 00 00 00 00 00 | ceeeeeeeaaeaiaan

<

Stopwatch Window

The Software Simulator Stopwatch Window is available from the drop-down menu, View > Debug Windows »
Stopwatch.

The Stopwatch Window displays a Current Count of cycles/time since the last Software Simulator action.
Stopwatch measures the execution time (number of cycles) from the moment Software Simulator has started and can
be reset at any time.

Delta represents the number of cycles between the lines where Software Simulator action has started and ended.

atch Clock X
Cyiles: Time:
Current Count; |2,103,943,273 105.20 5
Delka: 80,581,413 4044.07 ms
Stopwatch: 2,103,943,273 105197.16 ms
Reset To Zero
Clock: a0 MHz

MikroElektronika 132

mikroBasic PRO for dsPIC30/33 and PIC24

Notes:
- The user can change the clock in the Stopwatch Window, which will recalculate values for the latest specified
frequency.

- Changing the clock in the Stopwatch Window does not affect actual project settings — it only provides a simulation.
- Stopwatch is available only when Software Simulator is selected as a debugger.

EEPROM Watch Window

Note: EEPROM Watch Window is available only when mikrolCD is selected as a debugger.

To show the EEPROM Watch Window, select Debug Windows » EEPROM from the View drop-down menu.
The EEPROM Watch Window shows current content of the MCU's internal EEPROM memory.

There are two action buttons concerning the EEPROM Watch Window:

Read EEFROM - Reads data from MCU's internal EEPROM memory and loads it up into the EEPROM window.

Write EEPROM - Writes data from the EEPROM window into MCU's internal EEPROM memory.

EEPROM Watch 53]
Read EEFROM Write EEPROM
0o | 0L | 02 | 03 | 04 | 05 | 05 | o7 | 03 | 09 | 04 | 0B | 0c | oo | 0E | OF |ASCH | o

0320\ FFFF FF FF FF FF FF FF FF FF FF FF FF FF FF FF

0330| FF FF FF FF FF FF | FF FF FF FF FF FF FF FF FF FF

00| FF FF FF FF FF FF | FF FF FF FF FF FF FF FF FF | FF

00| FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF

00| FF FF FF FF FF FF | FF FF FF FF FF FF FF FF FF FF

o37a| FFFF | FF FF FF FF FF FF FF FF FF FF FF FF FF FF

00| FFFF FF FF FF FF FF FF FF FF FF FF FF FF FF FF

03| FF FF FF FF FF FF | FF FF FF FF FF FF FF FF FF FF

00| FFOFF FF FF FF FF FF FF FF FF FF FF FF FF FF | FF

00| FFFF FF FF FF FF FF FF FF FF FF FF FF FF FF FF

o3co| FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF

ool FFOFF O FF FF FF FF FF FF FF FF FF FF FF FF FF | FF

00| FFFF FF FF FF FF FF FF FF FF FF FF FF FF FF FF

00| FF FF FF FF FF FF | FF FF FF FF FF FF FF FF FF FF

0400) 0O oo oo oo oo oo oo oo oo oo oo oo oo oo oo oo

0410y 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 o0d

0420 00 oo oo oo oo oo oo oo oo oo oo oo oo oo oo oo

0430 00 oo oo oo oo oo oo oo oo oo oo oo oo oo oo oo

0440y 00 00 00 00 00 00 OO0 00 00 00 00 00 00 00 00 0d

0450 00 oo oo oo oo oo oo oo oo oo oo oo oo oo oo oo

04g0| 00 oo oo oo oo oo oo oo oo oo oo oo oo oo oo oo

0470y 00 00 00 00 00 00 OO0 00 00 00 00 00 00 00 00 o0d

0430 00 oo oo oo oo oo oo oo oo oo oo oo oo oo oo oo

0430 00 oo oo oo oo oo oo oo oo oo oo oo oo oo oo oo

04400 00 00 00 00 00 00 00 00 00 00 00 00 00 O0 00 00

napnd_nn n n n n n n n n n n n n n n O
STATUS: Ide

133 MikroElektronika

mikoBasic PRO for dsPIC30/33 and PIC24

Code Watch Window

Note: Code Watch Window is available only when mikrolCD is selected as a debugger.

To show the Code Watch Window, select Debug Windows » Code from the View drop-down menu.
The Code Watch Window shows code (hex format) written into the MCU.

There is one action button concerning the Code Watch Window:

- Reads code from the MCU and loads it up into the Code Window. Code reading is resources

consuming operation so the user should wait until the reading is over.

Also, you can set an address scope in which hex code will be read.

CODE Watch 3]

Address Scope
| oooao | | oosaao| |]

uli} | 0z | 04 | i3} | 0s | 04 | oC | 0OE | ASCIT e

0200 | ATSOID | ABZZCA | 470060 | AG4DID | ASO2CA | AP40I0 | ABO2CA | eomecn | <DLE»PEE" .G <DLES

0210 | AGDOI0 | ASDZDE | ATOOID | AS0ZDE& | OFFF96 | 470060 | AG3010 | Ag9s2ca | <DLE | <5TW=" <DL

0zz0 ATI0L0 | ABGBZCA 470060 AdZ010 AS42CA Arz0i0 AG42CA 470060 <DLE=05EL" " .G <DLl

0230 ARIOLO | ASZZCA AFI010 AEZZCA 470060 AB0010 ASOZCA A7O010 <DLE> <DLE>| E"® <DI

0240 AB02CA | 208300 As0010 AB0Z06 A70010 A00206 O7FFAC engaco | E <3Twz" A "=SPC> <D

0250 AsO010 37000z 07FF&4 370001 07FFa6 Fas000 050000 Fannnz <DLE> .} <5TH> .7 d ¥<

0z60 FF000F 20000 9FEF40 FFo019 20000 SFEF40 370016 200940 <50x .7, <BS=<SPCx

0270 SFEF40 FF0013 200040 SFEF40 FF0010 200300 9FEF40 370000 @ & <DC3> F@ <CR>

0z80 97BS4E E10051 3ZFFEE 7BS4E E10062 32FFEE 97BS4E E10063 M —a.afyzMN —b.a

0z90 3ZFFEE STBS4E E10064 3ZFFEE IFFFFO S7BE3E S000E1 570065 THEMN —d.aT9za s

0zAD 405010 SFEF40 7FEiFE0 O7FF3E B100zF 20580 AL0010 EFz000 <DLE > €@ @ 4¥ € <U5>

0ZEB0 Q0700 9TFBSAE 470060 408010 EQ0410 F2000C 97BSAE 470060 L <BELL="@® —" .Gl

0zC0 405010 Fa4010 FES000 FalFa0 07FF32 E100zF 200011 470060 <DLE > €@ <DLE> @ .1

0200 | 408810 | SPFFEF | 2085C0 | AOOOLOD | FASOO0 060000 | FADDO2 EFzo00 | <DLE= "@i§7 A "=SRC

0ZEQ Q54700 Q0400E E10465 310009 Z001C0 FE1FE0 07FF7a B1O0zF L G7 =50= @0 h <E0T:

0zF0 07FF31 B3C011 470060 40C510 ITFFF4 FAGO00 0e0000 Fannoz 1 §<BELL= <DC1= A%

0300 EFz000 Q54700 S0400E E10465 310009 200180 FEiFE0 07FF&7 . €EPCH L G7 <50x @0

0310 B100ZF O7FFz0 B3C011 470060 40C510 I7FFF4 Fag0oo 0&0000 { £ <5PCE §<BELL= <O

0320 Z0EEEF Z0FFFO BFADZO 200000 B7ADZ4 200040 B72044 FAODOD | 77 <5PC> 8 §<5PC> <5F

0330 020506 noaoan ZFFFFO B7AZAG O7FFID 200060 FE1FE0 OFFF4F | @ <ETX><5Te= . . 3§

0340 B100ZF 206610 TH1FE0 200060 TE1FE0 200010 TE1FE0 07FFE7 | f o <DLE> T<5PC=€ <

0350 B1006F 205690 TH1FE0 200060 TE1FE0 200020 TE1FE0 O7FF7F 0. O T<5PCE € <US>

0360 B100GF | 200CCE 273987 ED200E 3AFFFE ED2010 JAFFFC 200010 | 0.k E <FFe<SPC# 9

0370 Fa1Fan 07FF35 E1002F 208700 FaiFan 200010 7a1Fan 200010 | € <US=x S §<BELL> [£

0380 | 7siFen | OFFFED | BIOOEF | 208310 | 7ALFE0 | 200050 | 78IFS0 | 200020 | € <US=omp<BELL:o.cv
) 3
STATUS: Idle

MikroElektronika 134

mikroBasic PRO for dsPIC30/33 and PIC24

Software Simulator Debugger Options

Debugger Options
Name Description Function | Toolbar
Key lcon
Start Debugger Starts Debugger. F9 Eh
Run/Pause Debugger | Run/Pause Debugger. F6 |'_§E]
Stop Debugger Stop Debugger. Ctrl + F2 E‘?ﬂ

Executes the current program line, then halts. If the executed program line
Step Into calls another routine, the debugger steps into the routine and halts after F7 g3
executing the first instruction within it.

Executes the current program line, then halts. If the executed program line
Step Over calls another routine, the debugger will not step into it. The whole routine will F8 'ﬂ’[]
be executed and the debugger halts at the first instruction following the call.

Executes all remaining program lines within the subroutine. The debugger
Step Out halts immediately upon exiting the subroutine. this option is provided with the F8 [3gy
PI1C18 microcontroller family, but not with the PIC16 family.

Run To Cursor Executes the program until reaching the cursor position. Ctrl + F8]

Toggle breakpoints option sets new breakpoints or removes those already 5]

Toggle Breakpoint .
99 P set at the current cursor position.

Related topics: Run Menu, Debug Toolbar

139 MikroElektronika

mikoBasic PRO for dsPIC30/33 and PIC24

CHAPTER 6

mikroBasic PRO for dsPIC30/33
and PIC24 Specifics

The following topics cover the specifics of mikroBasic PRO for dsPIC30/33 and PIC24 compiler:

- Basic Standard Issues

- Predefined Globals and Constants
- Accessing Individual Bits

- Interrupts

- Linker Directives

- Built-in Routines

- Code Optimization

MikroElektronika 136

mikroBasic PRO for dsPIC30/33 and PIC24

GOTO Table

If a certain routine is allocated on the address higher than 64kB and can not be accessed directly, a GOTO table is
created just after the Interrupt Vector Table to enable this routine call.

GOTO table comprises of addresses of those routines that are allocated on the addresses higher than 64kB.

So, whenever a call is made to a routine which is not directly accessible, it jumps to an assigned GOTO table block
which contains address of a desired routine. From there, a GOTO call is generated to that address, and the routine is
executed.

Interrupt Vector
Table

Goto Table

Flash Program
Memory

User Program

Addresses

higher than 64kB |

'

See also Linker Directives.

131 MikroElektronika

mikoBasic PRO for dsPIC30/33 and PIC24

Basic Standard Issues

Divergence from the Basic Standard

- Function recursion is not supported because of no easily-usable stack and limited memory dsPIC Specific

C Language Extensions

mikroBasic PRO for dsPIC30/33 and PIC24 has additional set of keywords that do not belong to the standard Basic
language keywords:

- code
- data
- rx

- sfr
- at

- sbit
- bit
- iv

Related topics: Keywords, dsPIC Specifics

MikroElektronika 138

mikroBasic PRO for dsPIC30/33 and PIC24

Predefined Globals and Constants

To facilitate dsPIC30/33 and PIC24 programming, the mikroBasic PRO for dsPIC30/33 and PIC24 implements a number
of predefined globals and constants.

All dsPIC30/33 and PIC24 SFRs are implicitly declared as global variables of volatile word. These identifiers have an
external linkage, and are visible in the entire project. When creating a project, the mikroBasic PRO for dsPIC30/33
and PIC24 will include an appropriate (*.mbas) file from defs folder, containing declarations of available SFRs and
constants (such as PORTB, ADPCFG, etc). All identifiers are in upper case, identical to nomenclature in the Microchip
datasheets.

For a complete set of predefined globals and constants, look for “Defs” in the mikroBasic PRO for dsPIC30/33 and
PIC24 installation folder, or probe the Code Assistant for specific letters (Ctrl+Space in the Code Editor).

Predefined project level defines

mikroBasic PRO for dsPIC30/33 and PIC24 provides several predefined project level defines that you can use in your
project :

First one is equal to the name of selected device for the project. For example:
#IFDEF 30F4013
#QNDLB
Other predefined project level defines are:
#IFDEF P30}...#ENDIF
#IFDEF P33}...#ENDIF

#IFDEF P24}...#ENDIF
#IFDEF MIKRO ICD}.. .#ENDIF

Related topics: Project Level Defines

139 MikroElektronika

mikoBasic PRO for dsPIC30/33 and PIC24

Accessing Individual Bits

The mikroBasic PRO for dsPIC30/33 and PIC24 allows you to access individual bits of 16-bit variables. It also supports
sbit and bit data types.

Lets use the Zero bit as an example. This bit is defined in the definition file of the particular MCU as:

const 7 = 1
dim Z bit as sbit at SR.B1

To access this bit in your code by its name, you can write something like this:

'\ Clear Zero Bit
SR.Z =0

In this way, if Zero bit changes its position in the register, you are sure that the appropriate bit will be affected.
But, if Zero bit is not located in the designated register, you may get errors.

Another way of accesing bits is by using the direct member selector (.) with a variable, followed by a primary expression.
Primary expression can be variable, constant, function call or an expression enclosed by parentheses. For individual bit
access there are predefined global constants B0, B1, .. , B15,0r0, 1, .. 15,with 15 beingthe most significant bit:

\

predefined globals as bit designators
‘ Clear bit 0 in STATUS register
SR.BO = 0

‘" literal constant as bit designator

‘' Set bit 5 in STATUS register
SR.F5 =1

\

expression as bit designator

‘' Set bit 6 in STATUS register

i=25

SR. (i+1) =1

In this way, if the target bit changes its position in the register, you cannot be sure that you are invoking the appropriate bit.

This kind of selective access is an intrinsic feature of mikroBasic PRO for dsPIC30/33 and PIC24 and can be used
anywhere in the code. Identifiers B0-B15 are not case sensitive and have a specific namespace.

You may override them with your own members B0-B15 within any given structure.
When using literal constants as bit designators instead of predefined ones, make sure not to exceed the appropriate type size.
Also, you can access the desired bit by using its alias name, in this case 7z bit:

' Set Zero Bit
Z bit =1

In this way, if the Zero bit changes its register or position in the register, you are sure that the appropriate bit will be affected.

See Predefined Globals and Constants for more information on register/bit names.

MikroElektronika 140

mikroBasic PRO for dsPIC30/33 and PIC24

sbit type

The mikroBasic PRO for dsPIC30/33 and PIC24 compiler has sbit data type which provides access to registers,
SFRs, variables, etc.

You can declare a sbit varible in a unit in such way that it points to a specific bit in SFR register:

module MyModule

dim Abit as sbit sfr external ' Abit is precisely defined in some external file, for
example in the main program unit

iﬁélements

end.

In the main program you have to specify to which register this sbit points to, for example:

program MyProgram

Aiﬁ Abit as sbit at PORTB.O ' this is where Abit is fully defined

main:

end.

In this way the variable 2b it will actually point to PORTB.0. Please note that we used the keyword s r for declaration
of Abit, because we are pointing it to PORTB which is defined as a s r variable.

In case we want to declare a bit over a variable which is not defined as st r, then the keyword sfr is not necessary,
for example:

module Mymodule

dim AnotherBit as sbit external ' Abit is precisely defined in some external file, for
example in the main program unit

implements

end.

program MyProgram

dim MyVar as byte
dim Abit as sbit at MyVar.0 ' this is where Abit is fully defined

main:

end.

11 MikroElektronika

mikoBasic PRO for dsPIC30/33 and PIC24

at keyword

You can use the keyword “at” to make an alias to a variable, for example, you can write a library without using register
names, and later in the main program to define those registers, for example:

module MyModule
dim PORTAlias as byte external ' here in the library we can use 1its symbolic name
implements

end.

program MyProgram

Aiﬁ PORTAlias byte as at PORTB ' this is where PORTAlias is fully defined
main:

end.

Note: Bear in mind that when using =t operator in your code over a variable defined through a external modifier,
appropriate memory specifer must be appended also.

bit type

The mikroBasic PRO for dsPIC30/33 and PIC24 compiler provides a bit data type that may be used for variable
declarations. It can not be used for argument lists, and function-return values.

dim bf as bit ' bit variable

There are no pointers to bit variables:
dimptr—as—*bit- ' invalid

An array of type bit is not valid:
dim—arr—as—arrayftS—ofbit- ‘"'invalid
Note:

- Bit variables can not be initialized.

- Bit variables can not be members of structures and unions.
- Bit variables do not have addresses, therefore unary operator ¢ (address of) is not applicable to these variables.

Related topics: Predefined globals and constants, External modifier

MikroElektronika 142

mikroBasic PRO for dsPIC30/33 and PIC24

Interrupts

The dsPIC30/33 and PIC24 interrupt controller module reduces numerous peripheral interrupt request signals to a
single interrupt request signal to the dsPIC30/33 and PIC24 CPU and has the following features:

- Up to 8 processor exceptions and software traps

- 7 user-selectable priority levels

- Interrupt Vector Table (IVT) with up to 62 vectors (dsPIC30) or up to 118 vectors (dsPIC33 and PIC24)
- A unique vector for each interrupt or exception source

- Fixed priority within a specified user priority level

- Alternate Interrupt Vector Table (AIVT) for debug support

ISRs are organized in IVT. ISR is defined as a standard function but with the iv directive afterwards which connects the
function with specific interrupt vector. For example iv IvT ADDR T1INTERRUPT is IVT address of Timer1 interrupt
source of the dsPIC 30F3014 MCU. For more information on IVT refer to the dsPIC30/33 and PIC24 Family Reference
Manual.

Function Calls from Interrupt

Calling functions from within the interrupt routine is possible. The compiler takes care about the registers being used,
both in “interrupt” and in “main” thread, and performs “smart” context-switching between two of them, saving only the
registers that have been used in both threads. It is not recommended to use a function call from interrupt. In case of
doing that take care of stack depth.

Use the DisableContextSaving to instruct the compiler not to automatically perform context-switching. This means that
no register will be saved/restored by the compiler on entrance/exit from interrupt service routine.

This enables the user to manually write code for saving registers upon entrance and to restore them before exit from
interrupt.

Interrupt Handling

For the sake of interrupt handling convenience, new keyword, iv, is introduced. It is used to declare Interrupt Vector
Table (IVT) address for a defined interrupt routine:

sub procedure intl () iv l\/'l'iADDRiUlRXLN‘L‘ERRUP‘L‘
asm
nop
end asm
end sub

Now it is possible to explicitly declare interrupt routine address:

sub procedure intl() org 0x600 iv IVT ADDR UIRXINTERRUPT
asm
nop
end asm
end sub

143 MikroElektronika

mikoBasic PRO for dsPIC30/33 and PIC24

For the sake of backward compatibility, user may write also:

sub procedure intl () org IVT ADDR UIRXINTERRUPT
asm
nop
end asm
end sub

which is equivalent to:
sub procedure intl() iv IVT ADDR U1lRXINTERRUPT
asm
nop
end asm

end sub

Is is recommended that interrupts are handled in this way for the sake of better readability of the user projects.

Interrupt Example
Here is a simple example of handling the interrupts from Timer1 (if no other interrupts are allowed):
e Interrupt routine
sub procedure TimerlInt iv IVT ADDR TI1INTERRUPT
‘#* it is necessary to clear manually the interrupt flag:

IFSO = IFSO and S$SFFFE7 ‘ Clear TMRIIF

'** yuser code starts here

LATB = not PORTB ' Invert PORTB
'** user code ends here
end sub

MikroElektronika 114

mikroBasic PRO for dsPIC30/33 and PIC24

Linker Directives

mikroBasic PRO for dsPIC30/33 and PIC24 uses internal algorithm to distribute objects within memory. If you need to
have a variable or routine at the specific predefined address, use the linker directives absolute and org.

Directive absolute

Directive absolute specifies the starting address in RAM for a variable. If the variable is multi-byte, higher bytes will
be stored at the consecutive locations.

Directive absolute is appended to declaration of a variable:

' Variable x will occupy 1 word (16 bits) at address 0x32
dim x as word absolute 0x32

' Variable y will occupy 2 words at addresses 0x34 and 0x36
dim y as longint absolute 0x34

Be careful when using absolute directive, as you may overlap two variables by accident. For example:

dim i as word absolute 0x42
' Variable i will occupy 1 word at address 0x42;

dim jj as longint absolute 0x40

' Variable will occupy 2 words at 0x40 and 0x42; thus,
' changing i changes jj at the same time and vice versa

Directive orgall

Directive org specifies the starting address of a constant or a routine in ROM. It is appended to the constant or a
routine declaration.

To place a constant array in Flash memory, write the following:

' Constant array MONTHS will be placed starting from the address 0x800
const MONTHS as byte[l12] = (31,28,31,30,31,30,31,31,30,31,30,31) org 0x800

If you want to place simple type constant into Flash memory, instead of following declaration:

const SimpleConstant as byte = 0xAA org 0x2000

use an array consisting of single element:

const SimpleConstant as byte[l] = (0xAA) org 0x800

In first case, compiler will recognize your attempt, but in order to save Flash space, and boost performance, it will
automatically replace all instances of this constant in code with it’s literal value.

In the second case your constant will be placed in Flash in the exact location specified.

To place a routine on a specific address in Flash memory you should write the following:

145 MikroElektronika

mikoBasic PRO for dsPIC30/33 and PIC24

sub procedure proc (dim par as word) org 0x200
' Procedure will start at the address 0x200;

é&& sub

org directive can be used with main routine too. For example:

program Led Blinking

main: org 0x800 ' main procedure starts at 0x800

end

Directive orgall
Use the orgal1l directive to specify the address above which all routines and constants will be placed. Example:
main:

orgall (0x200) ' All the routines, constants in main program will be above the address

0x200

end.

MikroElektronika 146

mikroBasic PRO for dsPIC30/33 and PIC24

Built-in Routines

The mikroBasic PRO for dsPIC30/33 and PIC24 compiler provides a set of useful built-in utility functions. Built-in
functions do not have any special requirements. You can use them in any part of your project.

The Delay usand Delay ms routines are implemented as “inline”; i.e. code is generated in the place of a call, so the
call doesn’t count against the nested call limit.

The Vvdelay ms, Vdelay advanced ms, Delay Cyc, Delay Cyc Long, Get Fosc kHz and Get Fosc
per Cyc are actual Basic routines. Their sources can be foundinthe Lib Delays.mbas file located in the Uses
folder of the compiler.

-Lo

- Hi

- Higher

- Highest
- LoWord
- HiWord

-Inc
- Dec

- Chr
-Ord

- SetBit
- ClearBit
- TestBit

- Delay_us

- Delay_ms

- Vdelay_ms

- Vdelay_Advanced_ms
- Delay_Cyc

- Delay_Cyc_Long

- Clock_kHz

- Clock_MHz

- Get_Fosc_kHz

- Get_Fosc_Per_Cyc

- Reset
- Clrwdt

- DisableContextSaving

- SetFuncCall
- SetOrg

- DoGetDateTime
- DoGetVersion

141 MikroElektronika

mikoBasic PRO for dsPIC30/33 and PIC24

Lo
Prototype sub function Lo (dim number as longint) as byte
Description | Function returns the lowest byte of numbe r. Function does not interpret bit patterns of number — it
merely returns 8 bits as found in register.
This is an “inline” routine; code is generated in the place of the call, so the call doesn’t count against
the nested call limit.
Parameters | number: input value
Returns Lowest 8 bits (byte) of number, bits 7. . 0.
Requires Arguments must be variable of scalar type (i.e. Arithmetic Types and Pointers).
Example d = 0x12345678
tmp = Lo (d) '\ Equals 0x78
Lo(d) = O0xAA ' d equals 0x123456AA
Notes None.
Hi
Prototype sub function Hi (dim number as longint) as byte
Description | Function returns next to the lowest byte of numbe r. Function does not interpret bit patterns of number
— it merely returns 8 bits as found in register.
This is an “inline” routine; code is generated in the place of the call, so the call doesn’t count against
the nested call limit.
Parameters | number:input value
Returns Returns next to the lowest byte of number, bits 8..15.
Requires Arguments must be variable of scalar type (i.e. Arithmetic Types and Pointers).
Example d = 0x12345678
tmp = Hi(d) ' Equals 0x56
Hi(d) = OxAA ' d equals 0x1234AA78
Notes None.
MikroElektronika

148

mikroBasic PRO for dsPIC30/33 and PIC24

Higher

Prototype sub function Higher (dim number as longint) as byte

Description | Function returns next to the highest byte of number. Function does not interpret bit patterns of
number — it merely returns 8 bits as found in register.
This is an “inline” routine; code is generated in the place of the call, so the call doesn’t count against
the nested call limit.

Parameters | number: input value

Returns Returns next to the highest byte of number, bits 16..23.

Requires Arguments must be variable of scalar type (i.e. Arithmetic Types and Pointers).

Example d = 0x12345678
tmp = Higher (d) ' Equals 0x34
Higher (d) = OxAA ' d equals 0x12AA5678

Notes None.

Highest

Prototype sub function Highest (dim number as longint) as byte

Description | Function returns the highest byte of number. Function does not interpret bit patterns of number — it
merely returns 8 bits as found in register.
This is an “inline” routine; code is generated in the place of the call, so the call doesn’t count against
the nested call limit.

Parameters | number:input value

Returns Returns the highest byte of number, bits 24..31.

Requires Arguments must be variable of scalar type (i.e. Arithmetic Types and Pointers).

Example d = 0x12345678
tmp = Highest (d) ' Equals 0x12
Highest (d) = OxAA ' d equals 0xAA345678

Notes None.

149

mikoBasic PRO for dsPIC30/33 and PIC24

LoWord
Prototype sub function LoWord(dim val as longint) as word
Description | The function returns low word of va 1. The function does not interpret bit patterns of va1 — it merely
returns 16 bits as found in register.
Parameters:
- val:input value
Parameters | number
Returns Low word of val, bits 15. . 0.
Requires Nothing.
Example d = 0x12345678
tmp = LoWord (d) '\ Equals 0x5678
LoWord(d) = OxAAAA ' d equals 0x1234AAAA
Notes None.
HiWord
Prototype sub function HiWord(dim val as longint) as word
Description | The function returns high word of 2 1. The function does not interpret bit patterns of val — it merely
returns 16 bits as found in register.
Parameters:
- val:input value
Parameters | number
Returns High word of va 1, bits 31. .16.
Requires Nothing.
Example d = 0x12345678
tmp = HiWord(d) '\ Equals 0x1234
HiWord (d) = OxAAAA ' d equals 0xAAAA5678
Notes None.
MikroElektronika

190

mikroBasic PRO for dsPIC30/33 and PIC24

Inc
Prototype sub procedure Inc (dim byref par as longint)
Description | Increases parameter par by 1.
Parameters |- par: value which will be incremented by 1
Returns Nothing.
Requires Nothing.
Example p =4
Inc(p) ‘'p is now 5
Notes None.
Dec
Prototype sub procedure Dec (dim byref par as longint)
Description | Decreases parameter par by 1.
Parameters |- par: value which will be decremented by 1
Returns Nothing.
Requires Nothing.
Example p =4
Dec (p) ‘'p is now 3
Notes None.
Chr
Prototype sub function Chr (dim code as byte) as char
Description | Function returns a character associated with the specified character code . Numbers from 0 to 31
are the standard non-printable ASCII codes.
This is an “inline” routine; the code is generated in the place of the call.
Parameters |- code:input character
Returns Returns a character associated with the specified character code .
Requires Nothing.
Example c = Chr(10) ' returns the linefeed character
Notes None.

191

mikoBasic PRO for dsPIC30/33 and PIC24

Ord
Prototype sub function Ord(dim character as char) as byte
Description | Function returns ASCII code of the character.
This is an “inline” routine; the code is generated in the place of the call.
Parameters |- character:input character
Returns ASCII code of the character.
Requires Nothing.
Example c = 0rd(“A”) ' returns 65
Notes None.
SetBit
Prototype sub procedure SetBit (dim byref register as word, dim rbit as byte)
Description | Function sets the bit rbit of register . Parameter rbit needs to be a variable or literal with
value 0..15. For more information on register identifiers see Predefined Globals and Constants .
This is an “inline” routine; the code is generated in the place of the call.
Parameters |- register :desired register
- rbit: desired bit
Returns Nothing.
Requires Nothing.
Example SetBit (PORTB, 2) ' Set RB2
Notes None.
ClearBit
Prototype sub procedure ClearBit (dim byref register as word, dim rbit as byte)
Description | Function clears the bit rbit of register. Parameter rbit needs to be a variable or literal with
value 0..7. See Predefined globals and constants for more information on register identifiers.
This is an “inline” routine; code is generated in the place of the call, so the call doesn’t count against
the nested call limit.
Parameters |- register :desired register
- rbit: desired bit
Returns Nothing.
Requires Nothing.
Example ClearBit (PORTC, 7) ' Clear RC7
Notes None.
MikroElektronika

152

mikroBasic PRO for dsPIC30/33 and PIC24

TestBit
Prototype sub function TestBit (dim register , rbit as byte) as byte
Description | Function tests if the bit rbit of register is set. If set, function returns 1, otherwise returns 0.
Parameter rb i t needs to be a variable or literal with value 0..7. See Predefined globals and constants
for more information on register identifiers.
This is an “inline” routine; code is generated in the place of the call, so the call doesn’t count against
the nested call limit.
Parameters |- register :desired register
- rbit: desired bit
Returns If the bit is set, returns 1, otherwise returns 0.
Requires Nothing.
Example flag = TestBit (PORTE, 2) ‘1 if RE2 is set, otherwise 0
Notes None.
Delay_us
Prototype sub procedure Delay us(const time in us as longword)
Description | Creates a software delay in duration of Time In us microseconds.
This is an “inline” routine; the code is generated in the place of the call, so the call doesn’t count
against the nested call limit.
Parameters | time in us: delay time in microseconds. Valid values: constant values, range of applicable
constants depends on the oscillator frequency
Returns Nothing.
Requires Nothing.
Example Delay us(1000) ' One millisecond pause
Notes None.
Delay_ms
Prototype sub procedure Delay ms(const time in ms as longword)
Description | Creates a software delay in duration of Time In ms milliseconds.
This is an “inline” routine; the code is generated in the place of the call, so the call doesn’t count
against the nested call limit.
Parameters | Time in ms:delaytimein milliseconds. Valid values: constant values, range of applicable constants
depends on the oscillator frequency
Returns Nothing.
Requires Nothing.
Example Delay ms (1000) ' One second pause
Notes For generating delays with variable as input parameter use the Vdelay_ms routine.

193

mikoBasic PRO for dsPIC30/33 and PIC24

Vdelay_ms

Prototype sub procedure Vdelay ms(dim time in ms as word)

Description | Creates a software delay in duration of Time ms milliseconds. Generated delay is not as precise as
the delay created by Delay_ms.

Parameters | Time ms: delay time in milliseconds

Returns Nothing.

Requires Nothing.

Example pause = 1000
Vdé]l_ailyims (pause) ' ~ one second pause

Notes None.

VDelay _advanced_ms

Prototype sub procedure VDelay advanced ms (dim time ms, Current Fosc kHz as word)
Description | Creates a software delay in duration of time in ms milliseconds (a variable), for a given oscillator
frequency. Generated delay is not as precise as the delay created by Delay_ms.
Note that vdelay ms is library function rather than a built-in routine; it is presented in this topic for
the sake of convenience.
Parameters | - time ms: delay time in milliseconds
- Current Fosc kHz:frequency in kHz
Returns Nothing.
Requires Nothing.
Example pause = 1000
fosc = 10000
VDelay advanced ms (pause, fosc) ' Generates approximately one second
pause, for a oscillator frequency of 10 MHz
Notes None.

MikroElektronika 154

mikroBasic PRO for dsPIC30/33 and PIC24

Delay Cyc

Prototype

sub procedure Delay Cyc(dim x, y as word)

Description

Creates a delay based on MCU clock. Delay lasts for x*16384 + y MCU clock cycles.

Parameters | x: NumberOfCycles divided by 16384
v: remainder of the NumberOfCycles/16384 division

Returns Nothing.

Requires Nothing.

Example Delay Cyc(1l, 10) ''1x16384 + 10 = 16394 cycles pause

Notes Delay Cyc is a library function rather than a built-in routine; it is presented in this topic for the sake
of convenience.

Delay_Cyc_Long

Prototype sub procedure Delay Cyc Long(dim CycNo as word)

Description | Creates a delay based on MCU clock. Delay lasts for cycNo MCU clock cycles.

Parameters | - CycNo: number of MCU cycles

Returns Nothing.

Requires Nothing.

Example Delay Cyc Long(16384) ' 16384 cycles pause

Notes Delay Cyc Long is a library function rather than a built-in routine; it is presented in this topic for
the sake of convenience.

Clock_kHz

Prototype sub function Clock kHz () as longint

Description | Returns device clock in kHz, rounded to the nearest integer.
This is an “inline” routine; the code is generated in the place of the call.

Parameters | None.

Returns Device clock in kHz, rounded to the nearest integer.

Requires Nothing.

Example clk = Clock kHz()

Notes None.

199

mikoBasic PRO for dsPIC30/33 and PIC24

Clock_MHz
Prototype sub function Clock MHz () as word
Description | Returns device clock in MHz, rounded to the nearest integer.
This is an “inline” routine; the code is generated in the place of the call.
Parameters | None.
Returns Device clock in MHz, rounded to the nearest integer.
Requires Nothing.
Example clk = Clock MHz ()
Notes None.

Get_Fosc_kHz

Prototype sub function Get Fosc kHz () as longint

Description | Function returns device clock in kHz, rounded to the nearest integer.

Parameters | None.

Returns Device clock in kHz.

Requires Nothing.

Example clk = Get Fosc_ kHz ()

Notes Get Fosc kHz is a library function rather than a built-in routine; it is presented in this topic for the

sake of convenience.

Get_Fosc_Per_Cyc

Prototype sub function Get Fosc Per Cyc() as word

Description | Function returns device’s clock per cycle, rounded to the nearest integer.
Note that Get Fosc Per Cyc is library function rather than a built-in routine; it is presented in this
topic for the sake of convenience.

Parameters | None.

Returns Device’s clock per cycle, rounded to the nearest integer.

Requires Nothing.

Example dim clk per cyc as word
clk per cyc = Get Fosc Per Cyc()

Notes None.

MikroElektronika

196

mikroBasic PRO for dsPIC30/33 and PIC24

Reset

Prototype sub procedure Reset ()

Description | This procedure is equal to assembler instruction reset.

Parameters | None.

Returns Nothing.

Requires Nothing.

Example Reset () ' Resets the MCU

Notes None.

Clrwdt

Prototype sub procedure ClrWdt ()

Description | This procedure is equal to assembler instruction c1 rwdt.

Parameters | None.

Returns Nothing.

Requires Nothing.

Example Clrwdt () ' Clears WDT

Notes None.

DisableContextSaving()

Prototype sub procedure DisableContextSaving ()

Description | Use the DisableContextSaving () to instruct the compiler not to automatically perform context-
switching. This means that no register will be saved/restored by the compiler on entrance/exit from
interrupt service routine. This enables the user to manually write code for saving registers upon
entrance and to restore them before exit from interrupt.

Parameters | None.

Returns Nothing.

Requires This routine must be called from main.

Example DisableContextSaving () ' instruct the compiler not to automatically perform
context-switching

Notes None.

191

mikoBasic PRO for dsPIC30/33 and PIC24

SetFuncCall

Prototype sub procedure SetFuncCall (dim FuncName as string)

Description | If the linker encounters an indirect function call (by a pointer to function), it assumes that any routine
whose address was taken anywhere in the program can be called at that point if it's prototype matches
the pointer declaration.

Use the SetFuncCall directive within routine body to instruct the linker which routines can be called
indirectly from that routine:

SetFunCCall (called funcl[, ,...])

Routines specified in the setrFunccall argument list will be linked if the routine containing
SetFunCCall directive is called in the code no matter whether any of them was explicitly called or
not.

Thus, placing setFuncCall directive in main will make compiler link specified routines always.

Parameters |- FuncName: function name

Returns Nothing.

Requires Nothing.

Example sub procedure first (p, g as byte)

SetFuncCall (second) ‘' let linker know that we will call the routine
‘second’
end sub

Notes The setFunccall directive can help the linker to optimize function frame allocation in the compiled

stack.
SetOrg

Prototype sub procedure SetOrg(dim RoutineName as string, dim address as longint)

Description | Use the setOrg () routine to specify the starting address of a routine in ROM.

Parameters |- RoutineName: routine name
- address: starting address

Returns Nothing.

Requires This routine must be called from main.

Example SetOrg (UART1 Write, 0x1234)

Notes None.

MikroElektronika

198

mikroBasic PRO for dsPIC30/33 and PIC24

DoGetDateTime
Prototype sub function DoGetDateTime () as string
Description | Use the DoGetDateTime () to get date and time of compilation as string in your code.
Parameters | None.
Returns String with date and time when this routine is compiled.
Requires Nothing.
Example str = DoGetDateTime ()
Notes None.

DoGetVersion

Prototype sub function DoGetVersion () as string

Description | Use the DoGetversion () to get the current version of compiler.

Parameters | None.

Returns String with current compiler version.

Requires Nothing.

Example str = DoGetVersion() ' for example, str will take the value of '8.2.1.67
Notes None.

199

mikoBasic PRO for dsPIC30/33 and PIC24

Code Optimization

Optimizer has been added to extend the compiler usability, cut down the amount of code generated and speed-up its
execution. The main features are:

Constant folding

All expressions that can be evaluated in the compile time (i.e. are constant) are being replaced by their results. (3 + 5
> 8)‘

Constant propagation

When a constant value is being assigned to a certain variable, the compiler recognizes this and replaces the use of the
variable by constant in the code that follows, as long as the value of a variable remains unchanged.

Copy propagation
The compiler recognizes that two variables have the same value and eliminates one of them further in the code.

Value numbering

The compiler “recognizes” if two expressions yield the same result and can therefore eliminate the entire computation
for one of them.

"Dead code" ellimination

The code snippets that are not being used elsewhere in the programme do not affect the final result of the application.
They are automatically removed.

Stack allocation

Temporary registers (“Stacks”) are being used more rationally, allowing VERY complex expressions to be evaluated
with a minimum stack consumption.

Local vars optimization

No local variables are being used if their result does not affect some of the global or volatile variables.

Better code generation and local optimization

Code generation is more consistent and more attention is payed to implement specific solutions for the code “building
bricks” that further reduce output code size.

Related topics: SSA Optimization, dsPIC specifics, mikroBasic PRO for dsPIC30/33 and PIC24 specifics, Memory type
specifiers

MikroElektronika 160

mikroBasic PRO for dsPIC30/33 and PIC24

Single Static Assignment Optimization

Introduction

In compiler design, static single assignment form (often abbreviated as SSA form or SSA) is an intermediate
representation (IR) in which every variable is assigned exactly once.

An SSA-based compiler modifies the program representation so that every time a variable is assigned in the original
program, a new version of the variable is created.

A new version of the variable is distinguished (renamed) by subscripting the variable name with its version number or
an index, so that every definition of each variable in a program becomes unique.

At a joining point of the control flow graph where two or more different definitions of a variable meet, a hypothetical
function called a phi-function is inserted so that these multiple definitions are merged.

In mikroBasic PRO for dsPIC, SSA’'s main goal is in allocating local variables into the RX space (instead onto the frame).
To do that, SSA has to make an alias and data flow analysis of the Control Flow Graph.

Besides these savings, there are a number of compiler optimization algorithms enhanced by the use of SSA, like:

- Constant Propagation

- Dead Code Elimination
- Global Value Numbering
- Register Allocation

Changes that SSA brings is also in the way in which routine parameters are passed. When the SSA is enabled,
parameters are passed through a part of the RX space which is reserved exclusively for this purpose (W10-W13 for
dsPIC).

Allocating local variables and parameters in RX space has its true meaning for those architectures with hardware frame.

Enabling SSA optimization in compiler is done by checkif ¥ Enable 554 optimization | box from the Output Settings Menu.

Lets consider a trivial case:
program Example

sub procedure SSA Test(dim y as integer, dim k as integer)
if (y+tk) then
asm
nop
end asm
end if
end sub

main:
SSA Test (5,5)
end.

With SSA enabled, sub procedure ssa Test this example is consisted of 3 asm instructions:

;Example.mbas, 29 :: if (y+k) then
0x0100 0x45000B ADD W10, Wll, WO

161 MikroElektronika

mikoBasic PRO for dsPIC30/33 and PIC24

0x0102 0x320001
L SSA Test6:
;Example.mbas, 31
0x0104 0x000000

BRA 7 L SSA Test2

nop
NOP

Without SSA enabled, sub procedure ssA Test this example is consisted of 5 asm instructions :

;Example.mbas, 29

0x0102 0x97B8CE
0x0104 0x57006A
0x0106 0x408010
0x0108 0x320001

L SSA Test6:
;Example.mbas, 31
0x010A 0x000000

if (ytk) then

MOV [W14-8], Wl

SUB W14, #10, WO

ADD W1, [WO], WO

BRA 7 L SSA Test2
nop

NOP

Proper Coding Recommendations

To get the maximum out of the SSA, user should regard the following rules during the coding process:

- Routines should not contain too many parameters (not more than 4 words).
- Don’t change the value of the parameter in the function body (it is better to use a new local variable).
- If the functionl parameters are passed as function2 parameters, then parameter order should remain

the same:

sub procedure f2(dim a as integer, dim b as integer)

end sub

sub procedure fl(dim x as integer, dim y as integer)

' routine call

f2(x,y) ' x->a and y->b (1 to 1 and 2 to 2) 1is far more efficient than:
f2(y,x) ' y->a and x->b (1 to 2 and 2 to 1)
end sub

- Large amount of nested loops and complex structures as its members should be avoided.
- When writing a code in assembly, keep in mind that there are registers reserved exclusively for routine

parameters.

- Using goto and 1abel statements in nested loops should be avoided.
- Obtaining address of the local variable with the global pointer and using it to alter the variable’s address

should be avoided.

Note:

-mc1 files compiled with or without SSA enabled are fully compatible and can be used and mixed without
any restrictions, except pointers to functions.

- Functions, functions declarations and pointers that may point to these functions must be compiled with the
same option, either SSA enabled or disabled. If this is not the case, compiler will report an error.

162

mikroBasic PRO for dsPIC30/33 and PIC24

Asm code and SSA optimization

If converting code from an earlier version of the compiler, which consists of mixed asm code with the Basic
code, keep in mind that the generated code can substantially differ when SSA optimization option is enabled
or disabled.

This is due to the fact that SSA optimization uses certain working registers to store routine parameters

(W10-W13), rather than storing them onto the function frame.

Because of this, user must be very careful when writing asm code as existing values in the working registers

used by SSA optimization can be overwritten.

To avoid this, it is recommended that user includes desired asm code in a separate routine.

Debugging Notes

SSA also influences the code debugging in such a way that the local variables will be available in the Watch Window
only in those parts of the procedure where they have useful value (eg. on entering the procedure, variable isn’t available
until its definition).

Variables can be allocated in one part of the procedure in register W4, and in another part of the procedure in register
W2, if the optimizer estimates that it is better that way. That means that the local variable has no static address.

Warning Messages Enhancement

Besides the smaller code, SSA also deals with the intensive code analysis, which in turn has the consequence in

enhancing the warning messages.
For example, compiler will warn the user that the uninitialized variable is used:

sub procedure SSA Test ()

dim y as char

if (y) then
asm
nop
end asm
end if

end sub
main:

SSA Test ()
end.

Related topics: Code Optimization, dsPIC Specifics, mikroBasic PRO for dsPIC30/33 and PIC24 specifics, Memory

type specifiers

' Variable y might not have been initialized

163

mikoBasic PRO for dsPIC30/33 and PIC24

Common Object File Format (COFF)

COFF File Format

The Common Object File Format (COFF) is a specific file format suitable for code debugging.
The COFF incorporates symbolic procedure, function, variable and constant names information; line number information,
breakpoints settings, code highlighter and all the necessary information for effective and fast debugging.

By using COFF, it is possible to import and debug code generated by mikroElektronika compilers under Microchip’s
MPLAB®.

COFF File Generation

1. Start mikroBasic PRO for dsPIC30/33 and PIC24 Help and open the desired project. For example, UART project
for EasydsPIC4A board and dsPIC30F4013 will be opened:

Open
Lookin: |) EasydsPIC4A v @ & e E

) ADC

| [C)Butkon
My Recent [)Gled
Diocuments Iled

— IZ)Led Elinking
u [E i =) Touch Panel
Desklop

&J

My Documents

ter

=

My C
v File name: |UAF|T V| [Open l

Files of type: | mikroB asic Project [*.mbpds) e | [Cancel]

@

My Metwark [Open as read-only

MikroElektronika 164

mikroBasic PRO for dsPIC30/33 and PIC24

2. When the project is opened, go to Tools » Options > Output settings, and check the “Generate COFF file” option,
and click the OK button:

Options

Qukput Setkings

V' Generate ASM file
V' Include HEX opcodes
¥ Include ROM constants
¥ Include ROM Addresses
W Generate list file
V' Include debug infa

V' Include source lines in output files

Optimization level:

Four

Compiler

Case sensitive
Dynamic link For string literals

W Build all files as library

QK Apply Cancel

3. Now, compile the project. In the messages window, appropriate message on COFF file generation should appear:

Messages 3]

- [¥] Errars Warnings Hirits

Line Message Mo. Message Text

1] 1 mEDsPic.exe -DBG -pP30F4013 -MSF -GC -¥ -DL -011111114 -fod0 -N"C:\Program Files\Mikroelekkronik, .

u] 132 Compilation Started

1 1015 Hink: Compiling unit "C:\Program FilesiMikroelektronikaimikroBasic PRO For dsPIC\Examplesi\Developme. ..

513 1010 Hint: Unit "UART.mbas" has been recompiled

u] 133 Compiled Successfully

u] 133 Al files Compiled in 15 ms

1] 1143 Used R (bykesh 32 (100%) Free R (bytes): 0 (0%)

1] 1143 Skatic RAM (bytes): 41 Dwnamic RAM (bytes): 2035

1] 1143 Used ROM (bytes): 820 (3% Free ROM (bytes): 31948 (97%)

0 144 Praoject Linked Successfully

jo [1004 [COFF file successfully generated

a 1339 Linked in 610 ms

u] 140 Project 'UART. mbpds' completed: 1032 ms

u] 103 Finished successfully: 24 Mov 2009, 11:40:01

< il | >
— —

4. Generated COFF file will be created in the project folder, with the . cof extension.

Related topics: Using MPLAB® ICD 2 Debugger, Using MPLAB® Simulator

165 MikroElektronika

mikoBasic PRO for dsPIC30/33 and PIC24

CHAPTER 1

dsPIC30/33 and PIC24 Specifics

In order to get the most from the mikroBasic PRO for dsPIC30/33 and PIC24 compiler, the user should be familiar
with certain aspects of dsPIC30/33 and PIC24 MCU. This knowledge is not essential, but it can provide a better
understanding of the dsPIC30/33 and PIC24’s capabilities and limitations, and their impact on the code writing as

well.

MikroElektronika 166

mikroBasic PRO for dsPIC30/33 and PIC24

Types Efficiency

First of all, the user should know that dsPIC30/33 and PIC24’s ALU, which performs arithmetic operations, is optimized
for working with 16-bit types. Although mikroBasic PRO for dsPIC30/33 and PIC24 is capable of handling types like
byte, char or short, dsPIC30/33 and PIC24 will generate a better code for 16-bit types word and integer
type so use byte, char and short only in places where you can significantlly save RAM (e.g. for arrays dim a
as byte[30]).

Nested Calls Limitations

There are no Nested Calls Limitations, except by RAM size. A Nested call represents a function call within the function
body, either to itself (recursive calls) or to another function.

Recursive calls, as a form of cross-calling, are supported by mikroBasic PRO for dsPIC30/33 and PIC24, but they
should be used very carefully due to dsPIC30/33 and PIC24 stack and memory limitations. Also calling functions
from interrupt is allowed. Calling function from both interrupt and main thread is allowed. Be carefull because this
programming technique may cause unpredictable results if common resources are used in both main and interrupt.

Limits of Indirect Approach Through PSV

Constant aggregates are stored in Flash and are accessible through PSV. mikroBasic PRO for dsPIC30/33 and PIC24
can allocate more than 32KByte of constants. See near and far memory specifiers.

Limits of Pointer to Function

Currently pointer to functions are 16-bit variables. For functions which address exceeds 16 bit limit, the compiler uses
handle (16-bit pointer on GOTO). A handle usage is automatic compiler process so there is no need for the user to
intervene.

Variable, constant and routine alignment

Simple type variables whose size exceeds 1 byte (word, integer, dword, longint, real)are always setto
alignment 2 (i.e. are always allocated on even address).

Derived types and constant aggregates whose at least one element exceeds size of 1 byte are set to alignment 2.
Routines are always set to aligment 2.

167 MikroElektronika

mikoBasic PRO for dsPIC30/33 and PIC24

dsPIC Memory Organization

The dsPIC microcontroller's memory is divided into Program Memory and Data Memory. Program Memory (ROM) is
used for permanent saving program being executed, while Data Memory (RAM) is used for temporarily storing and
keeping intermediate results and variables.

Program Memory (ROM)

Program Memory (ROM) is used for permanent saving program code being executed, and it is divided into several
sections, as on the picture below. The size of these sections is device dependant.

The program memory map is divided into the User Memory Space and Configuration Memory Space. The User Memory
Space contains the Reset vector, interrupt vector tables, program memory and data EEPROM memory (dsPIC30 family
and some PIC24 family MCU’s).

The Configuration Memory Space contains non-volatile configuration bits for setting device options and the device ID
locations.

Program Memory (ROM) Organization

PIC24 |/ dsPIC30F / dsPIC33F
Program Memory

A

User Memorny
Space

“a

Configuration
Memory Space

o e S S S o . S S o S S o . S S

1. dsPIC33F Program Memory Organization

MikroElektronika 168

mikroBasic PRO for dsPIC30/33 and PIC24

Data Memory (RAM)

Data memory consists of:

- SFR Memory Space

- Xand Y Data RAM

- DMA RAM (only for dsPIC33F Family)
- Unimplemented Memory Space

Data Memory (RAM) Organization

—_——— e —— e ——

/ { !
I PIC24F / PIC24H } I dsPIC30F / dsPIC33F
I Data Memory I I Data Memory
| | |
|
| | |
I Near | I
| Data Space | | Near Data
l | I Memaory
| | |
| | |
| | I
| | |
|
| | |
| | |
| I I
| | |
I Provides Program I I Provides Program
I Space Visibility | I Space Visibility
|
| | |
|
| | |
- J ‘- - J
1. PIC24F Data Memory Organization
2. dsPIC33F Data Memory Organization
SFR Memory Space

The first 2kB of data memory is allocated to the Special Function Registers (SFRs). The SFRs are control and status
register for core and peripheral functions in the dsPIC.

X and Y Data RAM

Up to 8 kB of data RAM is implemented after the SFRs. This is general purpose RAM that can be used for data storage.
This RAM is split into X and Y memory for dsPIC instructions.

This allows DSP instructions to support dual operand reads, so that data can be fetched from X and Y memory space
at the same time for a single instruction.

The X and Y data space boundary is fixed for any given device. When not doing DSP instructions, the memory is all
treated as a single block of X memory.

169 MikroElektronika

mikoBasic PRO for dsPIC30/33 and PIC24

DMA RAM

Every dsPIC33F device contains a portion of dual ported DMA RAM located at the end of Y data space. Direct Memory
Access (DMA) is a very efficient mechanism of copying data between peripheral SFRs and buffers or variables stored
in RAM, with minimal CPU intervention.

The DMA controller can automatically copy entire blocks of data without requiring the user software to read or write the
peripheral Special Function Registers (SFRs) every time a peripheral interrupt occurs.

The DMA controller uses a dedicated bus for data transfers and therefore, does not steal cycles from the code execution
flow of the CPU. To exploit the DMA capability, the corresponding user buffers or variables must be located in DMA
RAM.

Unimplemented Memory Space

The last segment of data RAM space is not implemented, but can be mapped into program space for Program Space
Visibility. This allows program memory to be read as though it were in data RAM.

Notes:

- Boundaries between memory spaces are device specific. Please, refer to the appropriate datasheet for details.

- Memory spaces are not shown to scale. Please, refer to the appropriate datasheet for details.

There are seven memory type specifiers that can be used to refer to the data memory: rx, data, code, sfr,
xdata, ydata, and dma

Related topics: Accessing individual bits, SFRs, Memory type specifiers, dsPIC Memory Type Qualifiers

MikroElektronika 110

mikroBasic PRO for dsPIC30/33 and PIC24

Memory Type Specifiers

The mikroBasic PRO for dsPIC30/33 and PIC24 supports usage of all memory areas.

Each variable may be explicitly assigned to a specific memory space by including a memory type specifier in the
declaration, or implicitly assigned.

The following memory type specifiers can be used:

- code

- data

- X

- sfr

- xdata

- ydata

- dma

code

Description | The code memory type may be used for allocating constants in program memory.

Example ' puts txt in program memory
const txt = “Enter parameter” code

data

Description | This memory specifier is used when storing variable to the Data RAM.

Example ' puts data buffer in data ram
dim data buffer as char data

rx

Description | This memory specifier allows variable to be stored in the working registers space
(WREGO0-WREG15).

Example ' puts y in the working registers space
dim y as char rx

sfr

Description | This memory specifier allows user to access special function registers. It also
instructs compiler to maintain same identifier in source and assembly.

Example dim y as char sfr ' puts y in SFR space

L

mikoBasic PRO for dsPIC30/33 and PIC24

xdata

Description | This memory specifier allows user to access X Data memory space.

Example dim y as char xdata ' puts x in xdata memory space

ydata

Description | This memory specifier allows user to access Y Data memory space.

Example dim y as char ydata ' puts y in ydata memory space

dma

Description | This memory specifier allows user to access DMA memory space (dsPIC33F
specific).

Example dim y as char dma ' puts y in DMA memory space

Note: If none of the memory specifiers are used when declaring a variable, data specifier will be set as default by the
compiler.

Related topics: dsPIC Memory Organization, dsPIC Memory Type Qualifiers, Accessing individual bits, SFRs, Constants,
Functions

MikroElektronika 112

mikroBasic PRO for dsPIC30/33 and PIC24

Memory Type Qualifiers

In addition to the standard storage qualifiers(const, volatile)the compiler introduces storage qualifiers of near
and far.

Near Memory Qualifier

1. Data Memory Objects
The qualifier near is used to denote that a variable is allocated in near data space (the first 8 kB of Data
memory). Such variables can sometimes be accessed more efficiently than variables not allocated (or not
known to be allocated) in near data space.
If variables are allocated in the near data section, the compiler is often able to generate better (more
compact) code than if the variables are not allocated in the near data section.

2. Program Memory Objects
The qualifier near is used to denote that a constant is allocated in the default program memory page
(32kB segment of program memory). Default program memory page is the one with most free space and

is set by the compiler by analyzing program memory pages.
This qualifier is set as default by the compiler, if no other qualifier is used.

Far Memory Qualifier
1 Data Memory Objects
The qualifier far is used to denote that a variable will not be in near data space (i.e. the variable can be
located anywhere in data memory). This qualifier is set as default by the compiler, if no other qualifier is
used.

2. Program Memory Objects

The qualifier far is used to denote that a constant can be allocated anywhere in the program memory, in
the page pointed to by PSVPAG register.

Location of object based on memory qualifiers:

Qualifier/Memory Data Memory Program Memory

near First 8 kB of RAM In default page

far Anywhere in RAM In page pointed to PSVPAG register
Example:
dim i as char ' far memory qualifier is set, variable i can allocated somewhere in data memory
dim j as char near ' near memory qualifier is set, variable j will be allocated in the
first 8kB of data memory
const k as longint = 10000 ' near memory qualifier is set, constant k will be allocated

in the default memory page
Related topics: dsPIC Memory Organization, dsPIC Memory Type Specifiers

113 MikroElektronika

mikoBasic PRO for dsPIC30/33 and PIC24

Read Modify Write Problem

The Microchip microcontrollers use a sequence known as Read-Modify-Write (RMW) when changing an output state
(1 or 0) on a pin. This can cause unexpected behavior under certain circumstances.

When your program changes the state on a specific pin, for example RBO in PORTB, the microcontroller first READs
all 8 bits of the PORTB register which represents the states of all 8 pins in PORTB (RB7-RB0).

The microcontroller then stores this data in the MCU. The bit associated with RB that you've commanded to MODIFY
is changed, and then the microcontroller WRITEs all 8 bits (RB7-RB0) back to the PORTB register.

During the first reading of the PORT register, you will be reading the actual state of the physical pin.
The problem arises when an output pin is loaded in such a way that its logic state is affected by the load. Instances of
such loads are LEDs without current-limiting resistors or loads with high capacitance or inductance.

For example, if a capacitor is attached between pin and ground, it will take a short while to charge when the pin is set
to 1.

On the other hand, if the capacitor is discharged, it acts like a short circuit, forcing the pin to ‘0’ state, and, therefore, a
read of the PORT register will return 0, even though we wrote a 1 to it.

Lets analyze the following example:

PORTB.BO =1
PORTB.B1 =1

Assume that the PORTB is initially set to zero, and that all pins are set to output. Let's say we connect a discharged
capacitor to RBO pin.

The first line, PORTB.BO = 1 will be decoded like in this way:

READ PORTB is read: STORE Data is stored inside a temporary internal
register in the MCU:

' INTERNAL | — Store read value
— [T e s

2 L)

Read L -
from I_lLlLlLIJ_lLlI_IJ HEE.‘;'T“ERE alloflofjoofa]o]lof Recive
pins \ T e NN ¢

FORTE
. 00000000 Discharged LIS L eesires

I k= capacitor

-

s e i e § o § o f§ s e

Discharged

00000000 C capacitor

MikroElektronika 114

mikroBasic PRO for dsPIC30/33 and PIC24

Actual voltage levels on MCU pins are relevant.

MODIFY Data is modified to set the RBO bit: WRITE PORTB is written with the modified data.

The output driver for RBO turns on, and the

Modify value capacitor starts to charge:

modified
— value
REGISTER
e s s s B s ff o e | s

00000000 Discharged

TS capacitor 00000000 ¢ P

[

Write C oflofloflojlo]o]o]1) rezEren

The second line, PORTB.B1 = 1 will be decoded in this way:

READ PORTB is read: STORE Because the capacitor is still charging, the

voltage at RBO is still low and reads as a ‘0’
(since we are reading from the pins directly,
not from the PORTB register):

Store

read Value we didn't expect here
value (but physically still correct ona)

A ojjofjojofo]a]ofl Fesser
Read 1 (
from — 5
pins T—zjf:'::::": (00000000
Charging
0O0O0O0O0ODOOD C
capacitor Charging
T unnunnnnl_c oo i
Actual voltage levels on MCU pins are relevant.
MODIFY Data is modified to set the bit: WRITE PORTB is written with the new data. The

output driver for RB1 turns on, but the

Modify value driver for RB0 turns back off:

Write Hlmln ﬂﬂ ﬂmm IHNEGIETE!H._
d modified 'l
| value =
"'\-\.,_'
T o L e ST T = o e e e e i
unnuunnuTlc 5::;‘5:;‘3_ unnunn1ui i‘-mscharglng

—_|_wI capacitor

1715 MikroElektronika

mikoBasic PRO for dsPIC30/33 and PIC24

To correct the problem in the code, insert a delay after each PORTB.Bx = 1 line, or modify the entire PORTB register

in a single line PORTB = 0b00000011.

This problem can be avoided by using LATx register when writing to ports, rather than using PORTX registers.
Writing to a LATX register is equivalent to writing to a PORTXx register, but readings from LATx registers return the
data value held in the port latch, regardless of the state of the actual pin.

For example, lets analyze the following example:

LATB.BO =1
LATB.B1 =1

The first line, LATB.BO = 1 will be decoded in this way:

READ LATB is read:

REGISTER |
Read

from
LATE

.

o o e e e e e s | e

c Discharged
I capacitor

STORE Data is stored inside a temporary internal

register in the MCU:

f/’ STOre read value

|

e s s s o ff s f§ e | s

Discharged
I capaciter

Actual voltage levels on MCU pins are no longer relevant when using LATx for output

MODIFY Data is modified to set the RBO bit:
Modify value

s

s s s i s o o s s

0 Discharged
I capacitor

WRITE

Write
modified
value

LATB is written with the modified data.
The output driver for RBO turns on, and the
capacitor starts to charge:

ollofloflojlofo]of[1] e5irin
REGISTER

(Y

I ¢ capacitor

116

mikroBasic PRO for dsPIC30/33 and PIC24

The second line, LATB.B1 = 1 will be decoded in this way:

READ LATB is read: STORE Since the voltage levels on MCU pins are no

longer relevant, we get the expected value:
Store
Read
from
LATB —

read Expected
value wvalue

L

INTERMAL
0 Iu Iu lulnlnlu ﬂ TERNAL

L

- I_l\' :
c Charging

T ™ capacitor

e e) s | o ff o ff s | e
c Charging
I capacitor

Actual voltage levels on MCU pins are no longer relevant when using LATx for output

MODIFY Data is modified to set the bit: WRITE LATB is written with the new data. The

Modify value output driver for RB1 turns on, and the output
driver for RBO remains turned on:

oflofJollolloJo]1][1] Ae5zres
REGISTER |

g Write
modified
ojoflofojofoo]1] xesiien value

f

= =]
~

|
ﬁ | o) o ff s [} o | e o C e !
Charging | | % i
T - capacitor Charging

1 I capacitor

When to use LATx instead of PORTx

Depending on your hardware, one may experience unpredictable behavior when using PORTx bits for driving output.

Displays (GLCD, LCD), chip select pins in SPI interfaces and other cases when you need fast and reliable output, LATx
should be used instead of PORTx.

7m MikroElektronika

ﬂﬂﬂﬂﬂﬂﬂﬂﬂﬂﬂﬂﬂﬂﬂﬂﬂﬂﬂﬂﬂﬂﬂﬂﬂﬂﬂﬂﬂﬂﬂﬂ

CHAPTER 8

mikroBasic PRO for dsPIC30/33
and PIG24 Language Reference

mikroBasic PRO for dsPIC30/33 and PIC24

- Lexical Elements

- Whitespace
- Comments
- Tokens

- Literals

- Keywords

- Identifiers

- Punctuators

- Program Organization

- Program Organization
- Scope and Visibility

- Modules
- Variables
- Constants
- Labels
- Symbols
- Functions and Procedures
- Functions
- Procedures
- Types
- Simple Types
- Arrays
- Strings
- Pointers
- Structures

- Type Conversions

- Implicit Conversion
- Explicit Conversion

- Operators

- Introduction to Operators

- Operators Precedence and Associativity
- Arithmetic Operators

- Relational Operators

- Bitwise Operators

- Boolean Operators

- Expressions

- Expressions

119

mikoBasic PRO for dsPIC30/33 and PIC24

- Statements

- Introduction to Statements
- Assignment Statements
- Conditional Statements

- If Statement
- Select Case Statement

- lteration Statements (Loops)

- For Statement
- While Statement
- Do Statement

- Jump Statements

- Break and Continue Statements
- Exit Statement

- Goto Statement

- Gosub Statement

- asm Statement
- Directives

- Compler Directives
- Linker Directives

Lexical Elements Overview

The following topics provide a formal definition of the mikroBasic PRO for dsPIC30/33 and PIC24 lexical elements.
They describe different categories of word-like units (tokens) recognized by the language.

In the tokenizing phase of compilation, the source code file is parsed (i.e. broken down) into tokens and whitespace.
The tokens in mikroBasic PRO for dsPIC30/33 and PIC24 are derived from a series of operations performed on your
programs by the compiler.

A mikroBasic PRO for dsPIC30/33 and PIC24 program starts as a sequence of ASCII characters representing the
source code, created by keystrokes using a suitable text editor (such as the mikroBasic PRO for dsPIC30/33 and PIC24
Code Editor). The basic program unit in mikroBasic PRO for dsPIC30/33 and PIC24 is a file. This usually corresponds
to a named file located in RAM or on disk, having the extension .mbas.

MikroElektronika 180

mikroBasic PRO for dsPIC30/33 and PIC24

Whitespace

Whitespace is a collective name given to spaces (blanks), horizontal and vertical tabs, newline characters and comments.
Whitespace can serve to indicate where tokens start and end, but beyond this function, any surplus whitespace is
discarded.

For example, the two sequences

dim tmp as byte
dim j as word

and

dim tmp as byte
dim j as word

are lexically equivalent and parse identically.

Newline Character

Newline character (CR/LF) is not a whitespace in BASIC, and serves as a statement terminator/separator. In mikroBasic
PRO for dsPIC30/33 and PIC24, however, you may use newline to break long statements into several lines. Parser will
first try to get the longest possible expression (across lines if necessary), and then check for statement terminators.

Whitespace in Strings

The ASCII characters representing whitespace can occur within string literals, in which case they are protected from
the normal parsing process (they remain as a part of the string). For example, statement

some string = “mikro foo”
parses to four tokens, including a single string literal token:

some_ string

“mikro foo”
newline character

181 MikroElektronika

mikoBasic PRO for dsPIC30/33 and PIC24

Comments

Comments are pieces of text used to annotate a program, and are technically another form of whitespace. Comments are
for the programmer’s use only; they are stripped from the source text before parsing.

Use the apostrophe to create a comment:

' Any text between an apostrophe and the end of the
' line constitutes a comment. May span one line only.

There are no multi-line comments in mikroBasic PRO for dsPIC30/33 and PIC24

Tokens

Token is the smallest element of a mikroBasic PRO for dsPIC30/33 and PIC24 program, meaningful to the compiler.
The parser separates tokens from the input stream by creating the longest token possible using the input characters
in a left—to—right scan.

mikroBasic PRO for dsPIC30/33 and PIC24 recognizes the following kinds of tokens:

- keywords

- identifiers

- constants

- operators
- punctuators (also known as separators)

Token Extraction Example
Here is an example of token extraction. Take a look at the following example code sequence:
end flag = 0

First, note that end flag would be parsed as a single identifier, rather than as the keyword end followed by the identifier
_flag.

The compiler would parse it as the following four tokens:

end flag ' variable identifier
= ' assignment operator
0 ‘' literal

newline ' statement terminator

MikroElektronika 182

mikroBasic PRO for dsPIC30/33 and PIC24

Literals
Literals are tokens representing fixed numeric or character values.

The data type of a constant is deduced by the compiler using such clues as numeric value and format used in the
source code.

Integer Literals
Integral values can be represented in decimal, hexadecimal or binary notation.

In decimal notation, numerals are represented as a sequence of digits (without commas, spaces or dots), with optional
prefix + or - operator to indicate the sign. Values default to positive (6258 is equivalent to +6258).

The dollar-sign prefix ($) or the prefix Ox indicates a hexadecimal numeral (for example, S8F or 0x8F).
The percent-sign prefix (%) indicates a binary numeral (for example, $0101).

Here are some examples:

11 ' decimal literal

$11 ‘" hex literal, equals decimal 17
0x11 ‘" hex literal, equals decimal 17
$11 ‘" binary literal, equals decimal 3

The allowed range of values is imposed by the largest data type in mikroBasic PRO for dsPIC30/33 and PIC24 —
longword. The compiler will report an error if the literal exceeds 4294967295 (SFFEFFEEF).

Floating Point Literals
A floating-point value consists of:
- Decimal integer
- Decimal point
- Decimal fraction
- e or E and a signed integer exponent (optional)
You can omit either decimal integer or decimal fraction (but not both).

Negative floating constants are taken as positive constants with the unary operator minus (-) prefixed.

mikroBasic PRO for dsPIC30/33 and PIC24 limits floating-point constants to the range of +1.17549435082 * 10°% ..
+6.80564774407 * 10%.

Here are some examples:
0 ''= 0.0

-1.23 ‘'=-1.23
23.45e6 ' = 23.45 * 1076

183 MikroElektronika

mikoBasic PRO for dsPIC30/33 and PIC24

2e-5 ''=2.0 * 10"-5
3E+10 ''= 3.0 * 10710
.09E34 ''=0.09 * 10734

Character Literals

Character literal is one character from the extended ASCII character set, enclosed with quotes (for example, “2”).
Character literal can be assigned to variables of byte and char type (variable of by te will be assigned the ASCII value
of the character). Also, you can assign character literal to a string variable.

String Literals

String literal is a sequence of characters from the extended ASCII character set, enclosed with quotes. Whitespace is
preserved in string literals, i.e. parser does not “go into” strings but treats them as single tokens.

Length of string literal is a number of characters it consists of. String is stored internally as the given sequence of
characters plus a final nul1 character. This null character is introduced to terminate the string, it does not count
against the string’s total length.

String literal with nothing in between the quotes (null string) is stored as a single nul1 character.
You can assign string literal to a string variable or to an array of char.

Here are several string literals:

“Hello world!” ' message, 12 chars long

message, 21 chars long

two spaces, 2 chars long

wc” ' letter, 1 char long
w ‘'null string, 0 chars long

“Temperature is stable”

w w \

The quote itself cannot be a part of the string literal, i.e. there is no escape sequence. You could use the built-in function
Chr to print a quote: chr (34) . Also, see String Splicing.

MikroElektronika 184

mikroBasic PRO for dsPIC30/33 and PIC24

Keywords

Keywords are special-purpose words which cannot be used as normal identifier names.

Beside standard BASIC keywords, all relevant SFR are defined as global variables and represent reserved words that

cannot be redefined (for example: r0,
Editor) or refer to Predefined Globals and Constants.

Here is the alphabetical listing of keywords in mikroBasic PRO for dsPIC30/33 and PIC24:

- absolute

- abstract

- and

- array

- as

- asm

- assembler
- at

- automated
- bdata

- begin

- bit

- case

- cdecl

- class

- code

- compact

- const

- constructor
- contains

- data

- default

- deprecated
- destructor
- dispid

- dispinterface

- div

- dma

- do

- downto

- dynamic
- end

- except

- export

- exports
- external
- far

- file

- final

- finalization
- finally

- for

T1CON, etc). Probe Code Assistant for specific letters (Ctrl+Space in

185

mikoBasic PRO for dsPIC30/33 and PIC24

- forward

- goto

- helper

- idata

- if

- ilevel

- implementation
- implements
- in

- index

- inherited
- initialization
- inline

- interface
- io

- is

- iv

- label

- library

- message

- mod

- name

- near

- nil

- nodefault
- not

- object

- of

- on

- operator
- or

- org

- out

- overload
- override
- package

- packed

- pascal

- pdata

- platform
- private

- procedure
- program

- property
- protected
- public

- published
- raise

- read

- readonly
- record

- register

MikroElektronika 186

mikroBasic PRO for dsPIC30/33 and PIC24

- reintroduce
- repeat

- requires
- rx

- safecall
- sbit

- sealed

- set

- sfr

- shl

- shr

- small

- stdcall
- stored

- string

- threadvar
- to

- try

- type

- unit

- until

- uses

- var

- virtual
- volatile
- while

- with

- write

- writeonly
- xdata

- XOor

- ydata

Also, mikroBasic PRO for dsPIC30/33 and PIC24 includes a number of predefined identifiers used in libraries. You can
replace them by your own definitions, if you plan to develop your own libraries. For more information, see mikroBasic
PRO for dsPIC30/33 and PIC24 Libraries.

181 MikroElektronika

mikoBasic PRO for dsPIC30/33 and PIC24

Identifiers

Identifiers are arbitrary names of any length given to functions, variables, symbolic constants, user-defined data types
and labels. All these program elements will be referred to as objects throughout the help (don’t be confused with the
meaning of object in object-oriented programming).

“ on

Identifiers can contain letters from 2 to z and 2 to 7, the underscore character and digits from 0 to 9. First

character must be a letter or an underscore, i.e. identifier cannot begin with a numeral.

Case Sensitivity

mikroBasic PRO for dsPIC30/33 and PIC24 is not case sensitive, so sum, sum, and suM are equivalent identifiers.

Uniqueness and Scope

Although identifier names are arbitrary (within the rules stated), errors result if the same name is used for more than
one identifier within the same scope. Simply, duplicate names are illegal within the same scope. For more information,
refer to Scope and Visibility.

Identifier Examples
Here are some valid identifiers:

temperature V1
Pressure

no hit
dat2string
SUM3

_vtext

... and here are some invalid identifiers:

Ttemp ' NO -- cannot begin with a numeral

$higher ' NO -- cannot contain special characters

Xor ' NO -- cannot match reserved word

323.07.04 ' NO -- cannot contain special characters (dot)

MikroElektronika 188

mikroBasic PRO for dsPIC30/33 and PIC24

Punctuators
The mikroBasic PRO for dsPIC30/33 and PIC24 punctuators (also known as separators) are:

- []1— Brackets
- () — Parentheses

-,—Comma
-:—Colon
-.— Dot
Brackets
Brackets [| indicate single and multidimensional array subscripts:

dim alphabet as byte[30]

alphabet[2] = “c¢”

For more information, refer to Arrays.

Parentheses

Parentheses () are used to group expressions, isolate conditional expressions and indicate function calls and
function declarations:

d=c¢c * (a + b) ' Override normal precedence
if (d = z) then ... ‘" Useful with conditional statements
func () ' Function call, no arguments
sub function func2(dim n as word) ' Function declaration w/ parameters

For more information, refer to Operators Precedence and Associativity, Expressions and Functions and Procedures.

Comma

Comma (,) separates the arguments in function calls:

Led Out (1, 1, txt)

Furthermore, the comma separates identifiers in declarations:

dim i, j, k as word

The comma also separates elements in initialization lists of constant arrays:

const MONTHS as byte[l12] = (31,28,31,30,31,30,31,31,30,31,30,31)

189 MikroElektronika

mikoBasic PRO for dsPIC30/33 and PIC24

Colon
Colon (:) is used to indicate a labeled statement:
start: nop

goto start

For more information, refer to Labels.

Dot

Dot (.) indicates access to a structure member. For example:
person.surname = “Smith”

For more information, refer to Structures.

Dot is a necessary part of floating point literals. Also, dot can be used for accessing individual bits of registers in
mikroBasic PRO for dsPIC30/33 and PIC24.

Program Organization

mikroBasic PRO for dsPIC30/33 and PIC24 imposes strict program organization. Below you can find models for writing
legible and organized source files. For more information on file inclusion and scope, refer to Modules and to Scope
and Visibility.

Organization of Main Module

Basically, the main source file has two sections: declaration and program body. Declarations should be in their proper
place in the code, organized in an orderly manner. Otherwise, the compiler may not be able to comprehend the program
correctly.

When writing code, follow the model presented below. The main module should look like this:

program <program name>
include <include other modules>

VAR A A A AR AR A A A A AR AR AR A A A A AR A A A A A A AN A A AR A A A A A AR A A A A A A,k

‘* Declarations (globals):
AR B I I I i I i b i b I e b b I b I b b I b b b b I b I b b b b i b b b b b b b b I b b b b b b b b b b b

' symbols declarations
symbol

' constants declarations
const ...

MikroElektronika 190

mikroBasic PRO for dsPIC30/33 and PIC24

' structures declarations
structure

‘" variables declarations
dim Name[, NameZ2...] as ["]type [absolute 0x123]
[sfr]

' procedures declarations
sub procedure procedure name(...)
<local declarations>
end sub
' functions declarations
sub function function name(...) as return type

<local declarations>

end sub

[external]

Vhhkkhhhkhhkdhhhhrhkhkhhhhdhrhkhhbhhdhhkhrhhhhhdhkrhkhkhkhkhkd ko hkrhhhkhhxkx

‘* Program body:

Vhhkkhhhkhhkdhhhhr kb hhdhrhkhhbhhdhhhrhkhhkhhdhkrhkhkhkhkhkdhkrhk ok hkhkhkxkx

main:
. .
write your code here
end.

Organization of Other Modules

[volatile] [register]

Modules other than main start with the keyword modu1e. Implementation section starts with the keyword implements.

Follow the model presented below:

module <module name>
include <include other modules>

Vhhkkhhhkhhkdhhhhrkhkhhhhdhrhkhhbhhdhhhrhkhhrhhdhrhkhkhkhkhkd ko hkrhhhkhkxkx

‘* Interface (globals):

Vhhkkhhhkhhkkhhhhrkhkhhhhdhrhkhhhhdhhhrhhhrhhdhrhkhkhkhkhkd ko hkrhhhkhkxkx

' symbols declarations

symbol

' constants declarations
const

' structures declarations
structure

' variables declarations
dim Name[, NameZ2...] as ["]type [absolute 0x123]
[sfr]

[external]

[volatile] [register]

191

mikoBasic PRO for dsPIC30/33 and PIC24

' procedures prototypes
sub procedure sub procedure name([dim byref] [const] ParamName as ["]type, [dim byref]
[const] ParamName?, ParamName3 as ["]type)

' functions prototypes
sub function sub function name([dim byref] [const] ParamName as ["]type, [dim byref]
[const] ParamName?, ParamName3 as ["]type) as ["]type

Vh ok hhkhhkdhhhrhkhhhhdhrhkhhbhkhdhhhkrhkhkhrhhkhhrhkhkhkhkhkd ok hhhkkxkx

‘* Implementation:
Vhhkkhhhkhhkdhhhhrhkhhhhhhrhkhhbhkhdhhrhkrhkhhrkhhhhrhkhkdkhhkdhkrhkhrhhhkhkxkx

implements

' constants declarations
const

‘' variables declarations
dim

‘' procedures declarations
sub procedure sub procedure name([dim byref] [const] ParamName as ["]type, [dim byref]
[const] ParamName?, ParamName3 as ["]type) [ilevel 0x123] [overload] [forward]

<local declarations>

end sub

‘' functions declarations

sub function sub function name([dim byref] [const] ParamName as ["]type, [dim byref]
[const] ParamNameZ2, ParamName3 as ["]type) as ["]type [ilevel 0x123] [overload]
[forward]

<local declarations>
end sub
end.

Note: Sub functions and sub procedures must have the same declarations in the interface and implementation section.
Otherwise, compiler will report an error.

Scope and Visibility

Scope

The scope of an identifier is a part of the program in which the identifier can be used to access its object. There are
different categories of scope, which depends on how and where identifiers are declared:

MikroElektronika 192

mikroBasic PRO for dsPIC30/33 and PIC24

Place of declaration

Scope

Identifier is declared in the declaration section of
the main module, out of any function or procedure

Scope extends from the point where it is declared to the end of the current
file, including all routines enclosed within that scope. These identifiers have
a file scope and are referred to as globals.

Identifier is declared in the function or procedure

Scope extends from the point where it is declared to the end of the current
routine. These identifiers are referred to as locals.

Identifier is declared in the interface section of the
module

Scope extends the interface section of a module from the point where it

is declared to the end of the module, and to any other module or program
that uses that module. The only exception are symbols which have a scope
limited to the file in which they are declared.

Identifier is declared in the implementation section of
the module, but not within any function or procedure

Scope extends from the point where it is declared to the end of the module.
The identifier is available to any function or procedure in the module.

Visibility

The visibility of an identifier is that region of the program source code from which legal access to the identifier’s

associated object can be made.

Scope and visibility usually coincide, though there are circumstances under which an object becomes temporarily
hidden by the appearance of a duplicate identifier, i.e. the object still exists but the original identifier cannot be used to
access it until the scope of the duplicate identifier is ended.

Technically, visibility cannot exceed scope, but scope can exceed visibility.

Name Spaces

Name space is a scope within which an identifier must be unique. The mikroBasic PRO for dsPIC30/33 and PIC24 uses

two distinct categories of identifiers:

1. Global variables are visible throughout the whole unit, from the place of declaration. Also. they can be
seen in other units, if they are declared above the Implementation section.
2. Local variables, parameters, types, function results - must be unique within the block in which they are

declared.
For example:

dim level as byte

sub procedure control (dim sens as byte)

dim location as byte

location =1
sens = location
level = 123

end sub

sub procedure temperature

location = 0 V' ILLEGAL
sens = 23 V' ILLEGAL: redefinition of sens
level = 95

end sub

193

mikoBasic PRO for dsPIC30/33 and PIC24

Modules

In mikroBasic PRO for dsPIC30/33 and PIC24, each project consists of a single project file and one or more module
files. The project file, with extension . mbpds contains information on the project, while modules, with extension . mbas,
contain the actual source code. See Program Organization for a detailed look at module arrangement.

Modules allow you to:

- break large programs into encapsulated modules that can be edited separately,
- create libraries that can be used in different projects,
- distribute libraries to other developers without disclosing the source code.

Each module is stored in its own file and compiled separately; compiled modules are linked to create an application. To
build a project, the compiler needs either a source file or a compiled module file for each module.

Include Clause

mikroBasic PRO for dsPIC30/33 and PIC24 includes modules by means of the include clause. It consists of the
reserved word include, followed by a quoted module name. Extension of the file should not be included.

You can include one file per include clause. There can be any number of the include clauses in each source file,
but they all must be stated immediately after the program (or module) name.

Here’s an example:
program MyProgram

include “utils”
include “strings”
include “MyUnit”

For the given module name, the compiler will check for the presence of .mc1 and .mbas files, in order specified by
search paths.

- If both .mbas and .mc1 files are found, the compiler will check their dates and include the newer one in
the project. If the .mbas file is newer than the .mc 1, then .mbas file will be recompiled and new . mc 1 will
be created, overwriting the old .mc1.

- If only the .mbas file is found, the compiler will create the .mc1 file and include it in the project;

- If only the .mc1 file is present, i.e. no source code is available, the compiler will include it as found;

- If none of the files found, the compiler will issue a “File not found” warning.

Main Module

Every project in mikroBasic PRO for dsPIC30/33 and PIC24 requires a single main module file. The main module is
identified by the keyword program at the beginning. It instructs the compiler where to “start”.

After you have successfully created an empty project with Project Wizard, Code Editor will display a new main module.
It contains the bare-bones of the program:

MikroElektronika 194

mikroBasic PRO for dsPIC30/33 and PIC24

program MyProject
‘" main procedure
main:
‘' Place program code here

end.

Other than comments, nothing should precede the keyword program. After the program name, you can optionally
place the include clauses.

Place all global declarations (constants, variables, labels, routines, structures) before the label main.

Other Modules

Modules other than main start with the keyword module. Newly created blank module contains the bare-bones:
module MyModule

implements

end.

Other than comments, nothing should precede the keyword module. After the module name, you can optionally place
the include clauses.

Interface Section

Part of the module above the keyword implements is referred to as interface section. Here, you can place global
declarations (constants, variables, labels, routines, structures) for the project.

Do not define routines in the interface section. Instead, state the prototypes of routines (from implementation section)
that you want to be visible outside the module. Prototypes must exactly match the declarations.

Implementation Section

Implementation section hides all the irrelevant innards from other modules, allowing encapsulation of code.
Everything declared below the keyword implements is private, i.e. has its scope limited to the file. When you declare
an identifier in the implementation section of a module, you cannot use it outside the module, but you can use it in any

block or routine defined within the module.

By placing the prototype in the interface section of the module (above the implements) you can make the routine
public, i.e. visible outside of module. Prototypes must exactly match the declarations.

195 MikroElektronika

mikoBasic PRO for dsPIC30/33 and PIC24

Variables

Variable is an object whose value can be changed during the runtime. Every variable is declared under unique name
which must be a valid identifier. This name is used for accessing the memory location occupied by a variable.

Variables are declared in the declaration part of the file or routine — each variable needs to be declared before being
used. Global variables (those that do not belong to any enclosing block) are declared below the include statements,
above the label main.

Specifying a data type for each variable is mandatory. Syntax for variable declaration is:

dim identifier list as type

Here, identifier list is a comma-delimited list of valid identifiers, and t ype can be any data type.

For more details refer to Types and Types Conversions. For more information on variables’ scope refer to the chapter
Scope and Visibility.

Here are a few examples:
dim i, j, k as byte

dim counter, temp as word
dim samples as longint[100]

External Modifier

Use the external modifier to indicate that the actual place and initial value of the variable, sub function or sub
procedure body, is defined in a separate source code module.

For example, lets create a project which will calculate circle area and will have sub function and sub procedure definition
in two different modules, and a call to these routines in the third, separate module.

So, the project will be consisted of the main module, Main Module.mpas and First Module.mpas and Second
Module.mpas modules.

In the Main Module we will define routine called r squared (calculates radius squared). Also, both modules must
be included in the Main Module:

program Main Module

include First Module

include Second Module ' Include both used modules

sub function r square(dim r as float) as float ' Definition of the r square routine
result = r*r;

end sub

main:
CircleArea () '\ CircleArea routine call

end.

end.

MikroElektronika 196

mikroBasic PRO for dsPIC30/33 and PIC24

Inthe First Module we will define and declare routine called pi r squared (calculates pi multiplied by the radius
squared):

module First Module

sub procedure pi r square (dim rr as float) ‘ Declaration of the pi r square routine
implements
sub procedure pi r square (dim rr as float) ‘ Definition of the pi r square routine
dim res as float
res = rr*3.14
end sub
end.

Inthe second Module we will make a call to the routines defined externally (r squared and pi r squared). First
of all, we must declare their prototypes followed with a external modifier. Then, we can proceed to the routine call :

module Second Module

sub procedure CircleArea()

sub function r square(dim r as float) as float external ‘ Declaration of the r square
routine (defined in Main Module) followed with a external modifier
sub procedure pi r square(dim rr as float) external ‘ Declaration of the pi r square

routine (defined in Second Module) followed with a external modifier

implements

sub procedure CircleArea() ‘' Definition of the CircleArea routine
dim res as real
res = r square(5) ‘' Calculate r*r
pi r square(res) ‘' Calculate pi*r*r

end sub

end.

Variables and dsPI1C30/33 and PIC24

Every declared variable consumes part of RAM memory. Data type of variable determines not only the allowed range
of values, but also the space a variable occupies in RAM memory. Bear in mind that operations using different types
of variables take different time to be completed. mikroBasic PRO for dsPIC30/33 and PIC24 recycles local variable
memory space — local variables declared in different functions and procedures share the same memory space, if
possible.

There is no need to declare SFRs explicitly, as mikroBasic PRO for dsPIC30/33 and PIC24 automatically declares
relevant registers as global variables of word. For example: w0, TMRI, etc.

197 MikroElektronika

mikoBasic PRO for dsPIC30/33 and PIC24

Constants

Constant is a data whose value cannot be changed during the runtime. Using a constant in a program consumes no
RAM memory. Constants can be used in any expression, but cannot be assigned a new value.

Constants are declared in the declaration part of a program or routine. You can declare any number of constants after
the keyword const:

const constant name [as type] = value

Every constant is declared under unique constant name which must be a valid identifier. It is a tradition to write
constant names in uppercase. Constant requires you to specify va 1 ue, which is a literal appropriate for the given type.
type is optional and in the absence of it , the compiler assumes the “smallest” type that can accommodate va i ue.
Note: You cannot omit type when declaring a constant array.

Here are a few examples:

const MAX as longint = 10000

const MIN = 1000 ‘' compiler will assume word type

const SWITCH = “n” ‘' compiler will assume char type

const MSG = “Hello” ‘' compiler will assume string type

const MONTHS as byte[l12] = (31,28,31,30,31,30,31,31,30,31,30,31)
Labels

Labels serve as targets for goto and gosub statements. Mark the desired statement with label and colon like this:

label identifier : statement

No special declaration of label is necessary in mikroBasic PRO for dsPIC30/33 and PIC24.

Name of the label needs to be a valid identifier. The labeled statement and goto/gosub statement must belong to

the same block. Hence it is not possible to jump into or out of routine. Do not mark more than one statement in a block

with the same label.

Note:

- The label ma in marks the entry point of a program and must be present in the main module of every project. See
Program Organization for more information.

- Label should be followed by end of line (CR) otherwise compiler will report an error.

Here is an example of an infinite loop that calls the procedure Beep repeatedly:

loop:

Beep
goto loop

MikroElektronika 198

mikroBasic PRO for dsPIC30/33 and PIC24

Symbols

mikroBasic PRO fordsPIC30/33 and PIC24 symbols allow you to create simple macros without parameters. You can
replace any line of code with a single identifier alias. Symbols, when properly used, can increase code legibility and
reusability.

Symbols need to be declared at the very beginning of the module, right after the module name and (optional) include
clauses. Check Program Organization for more details. Scope of a symbol is always limited to the file in which it has
been declared.

Symbol is declared as:

symbol alias = code

Here, a1 1as must be a valid identifier which you will use throughout the code. This identifier has a file scope. The code
can be any line of code (literals, assignments, function calls, etc).

Using a symbol in the program consumes no RAM — the compiler will simply replace each instance of a symbol with the
appropriate line of code from the declaration.

Here is an example:

symbol MAXALLOWED = 216 ‘' Symbol as alias for numeric value
symbol PORT = PORTC ‘' Symbol as alias for SFR

symbol MYDELAY = Delay ms (1000) ‘' Symbol as alias for procedure call
dim cnt as byte ' Some variable

main:

if cnt > MAXALLOWED then
cnt = 0
PORT.1 = 0
MYDELAY

end if

Note: Symbols do not support macro expansion in a way the C preprocessor does.

199 MikroElektronika

mikoBasic PRO for dsPIC30/33 and PIC24

Functions and Procedures

Functions and procedures, collectively referred to as routines, are subprograms (self-contained statement blocks) which perform
a certain task based on a number of input parameters. When executed, a function returns value while procedure does not.

Functions

A function is declared like this:

sub function function name (parameter list) as return type
[local declarations]
function body

end sub

function name represents a function’s name and can be any valid identifier. return typeis a type of return value
and can be any simple type or complex type. Within parentheses, parameter 1ist is a formal parameter list very
similar to variable declaration. In mikroBasic PRO for PIC, parameters are always passed to a function by the value. To
pass an argument by address, add the keyword by re r ahead of identifier.

Local declarations are optional declarations of variables and/or constants, local for the given function. Function
body is a sequence of statements to be executed upon calling the function.

Calling a function

Afunctionis called by its name, with actual arguments placed in the same sequence as their matching formal parameters.
The compiler is able to coerce mismatching arguments to the proper type according to implicit conversion rules. Upon
a function call, all formal parameters are created as local objects initialized by values of actual arguments. Upon return
from a function, a temporary object is created in the place of the call and it is initialized by the value of the function
result. This means that function call as an operand in complex expression is treated as the function result.

In standard Basic, a function name is automatically created local variable that can be used for returning a value of
a function. mikroBasic PRO for dsPIC30/33 and PIC24 also allows you to use the automatically created local variable
result to assign the return value of a function if you find function name to be too ponderous. If the return value of a
function is not defined the compiler will report an error.

Function calls are considered to be primary expressions and can be used in situations where expression is expected.
A function call can also be a self-contained statement and in that case the return value is discarded.

Example
Here's a simple function which calculates x" based on input parameters < and n (n > 0):

sub function power (dim x, n as byte) as longint
dim i as byte
result =1
if n > 0 then
for i = 1 to n
result = result*x
next i
end if
end sub

MikroElektronika 200

mikroBasic PRO for dsPIC30/33 and PIC24

Now we could call it to calculate, say, 3'%

tmp = power (3, 12)

Procedures
Procedure is declared like this:
sub procedure procedure name(parameter 1ist)

[local declarations]

procedure body
end sub
procedure name represents a procedure’s name and can be any valid identifier. Within parentheses, parameter
1ist isaformal parameter list similar to variable declaration. In mikroBasic PRO for dsPIC30/33 and PIC24, parameters
are always passed to procedure by value; to pass argument by address, add the keyword by ref ahead of identifier.
Local declarations areoptional declaration of variables and/or constants, local for the given procedure. Procedure
body is a sequence of statements to be executed upon calling the procedure.
Calling a procedure
A procedure is called by its name, with actual arguments placed in the same sequence as their matching formal
parameters. The compiler is able to coerce mismatching arguments to the proper type according to implicit conversion
rules. Upon procedure call, all formal parameters are created as local objects initialized by the values of actual

arguments.

Procedure call is a self-contained statement.

Example:
Here’s an example procedure which transforms its input time parameters, preparing them for output on Lcd:

sub procedure time prep (dim byref sec, min, hr as byte)

sec = ((sec and SFO0) >> 4)*10 + (sec and S$OF)

min = ((min and S$FO0) >> 4)*10 + (min and S$OF)

hr = ((hr and S$F0) >> 4)*10 + (hr and S$SOF)
end sub

A function can return a complex type. Follow the example bellow to learn how to declare and use a function which
returns a complex type.

201 MikroElektronika

mikoBasic PRO for dsPIC30/33 and PIC24

Example:
This example shows how to declare a function which returns a complex type.
program Example

structure TCircle ' Structure
dim CenterX, CenterY as word
dim Radius as byte

end structure

dim MyCircle as TCircle ' Global variable

sub function DefineCircle(dim x, y as word, dim r as byte) as TCircle ' DefineCircle
function returns a Structure

result.CenterX = x

result.CenterY =y

result.Radius = r
end sub

main:
MyCircle = DefineCircle (100, 200, 30) ' Get a Structure via function call
MyCircle.CenterX = DefineCircle (100, 200, 30).CenterX + 20 ' Access a Structure field
via function call

‘ | == |- |

' \ \
! Function returns TCircle Access to one field of TCircle
end.

Forward declaration

A function can be declared without having it followed by it's implementation, by having it followed by the forward
procedure. The effective implementation of that function must follow later in the module. The function can be used after
a forward declaration as if it had been implemented already. The following is an example of a forward declaration:

program Volume
dim Volume as word
sub function First(dim a as word, dim b as word) as word forward
sub function Second(dim c as word) as word
dim tmp as word
tmp = First (2, 3)
result = tmp * c

end sub

sub function First (dim a, b as word) as word

result = a * b
end sub
main:

Volume = Second (4)
end.

MikroElektronika 202

mikroBasic PRO for dsPIC30/33 and PIC24

Functions reentrancy

Functions reentrancy is allowed. Remember that the dsPIC30/33 and PIC24 have memory limitations that can vary
between MCUs.

Types

Basic is strictly typed language, which means that every variable and constant need to have a strictly defined type,
known at the time of compilation.

The type serves:

- to determine the correct memory allocation required,
- to interpret the bit patterns found in the object during subsequent accesses,
- in many type-checking situations, to ensure that illegal assignments are trapped.

mikroBasic PRO for dsPIC30/33 and PIC24 supports many standard (predefined) and user-defined data types, including
signed and unsigned integers of various sizes, arrays, strings, pointers and structures.

Type Categories
Types can be divided into:

- simple types
- arrays

- strings

- pointers

- structures

203 MikroElektronika

mikoBasic PRO for dsPIC30/33 and PIC24

Simple Types

Simple types represent types that cannot be divided into more basic elements and are the model for representing
elementary data on machine level. Basic memory unit in mikroBasic PRO for dsPIC30/33 and PIC24 has 16 bits.

Here is an overview of simple types in mikroBasic PRO for dsPIC30/33 and PIC24:

Type Size Range

bit 1—bit 0or1

sbit 1-bit Oor1

byte, char 8-bit 0..255

short 8-bit 127 ..128

word 16-bit 0..65535

integer 16—-bit 32768 .. 32767

longword 32—bit 0 .. 4294967295

longint 32-bit 2147483648 .. 2147483647

float 32-bit +1.17549435082 * 108 .. +6.80564774407 * 108

You can assign signed to unsigned or vice versa only using the explicit conversion. Refer to Types Conversions for
more information.

Derived Types

The derived types are also known as structured types. They are used as elements in creating more complex user-
defined types.

The derived types include:
- arrays

- pointers
- structures

Arrays

An array represents an indexed collection of elements of the same type (called the base type). Since each element has
a unique index, arrays, unlike sets, can meaningfully contain the same value more than once.

Array Declaration

Array types are denoted by constructions in the following form:

typelarray length]

Each of the elements of an array is numbered from 0 through array length - 1.

Every element of an array is of ¢ ype and can be accessed by specifying array name followed by element’s index within
brackets.

MikroElektronika 204

mikroBasic PRO for dsPIC30/33 and PIC24

Here are a few examples of array declaration:

dim weekdays as byte[7]
dim samples as word[50]

main:
' Now we can access elements of array variables, for example:
samples[0] = 1
if samples[37] = 0 then

Constant Arrays

Constant array is initialized by assigning it a comma-delimited sequence of values within parentheses. For example:

' Declare a constant array which holds number of days in each month:
const MONTHS as byte[12] = (31,28,31,30,31,30,31,31,30,31,30,31)

Note that indexing is zero based; in the previous example, number of days in January is MONTHS [0] and number of
days in December is MONTHS [11].

The number of assigned values must not exceed the specified length. Vice versa is possible, when the trailing “excess”
elements will be assigned zeroes.

For more information on arrays of char, refer to Strings.

Multi-dimensional Arrays

Multidimensional arrays are constructed by declaring arrays of array type. These arrays are stored in memory in such
way that the right most subscript changes fastest, i.e. arrays are stored “in rows”. Here is a sample 2-dimensional
array:

dim m as byte[5][10] '\ 2-dimensional array of size 5x10

Avariable m is an array of 5 elements, which in turn are arrays of 10 byte each. Thus, we have a matrix of 5x10 elements
where the first elementis m[0] [0] and lastoneism[4] [9]. The first element of the 4th row would be m[3] [0].

205 MikroElektronika

mikoBasic PRO for dsPIC30/33 and PIC24

Strings

A string represents a sequence of characters equivalent to an array of char. It is declared like this:

string([string length]

The specifier st ring lengthisanumber of characters a string consists of. The string is stored internally as the given
sequence of characters plus a final nu11 character (zero). This appended “stamp” does not count against string’s total
length.

A null string (") is stored as a single nu 11 character.

You can assign string literals or other strings to string variables. The string on the right side of an assignment operator
has to be shorter than another one, or of equal length. For example:

dim msgl as string[20]
dim msg2 as string[19]

main:
msgl = “This is some message”
msg2 = “Yet another message”
msgl = msg2 ' this is ok, but vice versa would be illegal

Alternately, you can handle strings element—by—element. For example:
dim s as string[5]

s = “mik”

‘'s5[0] is char literal
‘'s[1] is char literal “i
‘'s[2] is char literal “k”
‘'s[3] is zero

‘' s[4] is undefined

‘'s[5] is undefined

w

m”

w2

Be careful when handling strings in this way, since overwriting the end of a string will cause an unpredictable
behavior.

Array of string is declared in this manner:
typedef str as string[5] ‘' first, declare str as a string of 5 elements

dim buffer as str[5] ‘' now, declare buffer as a array of str elements

String Concatenating

mikroBasic PRO for dsPIC30/33 and PIC24 allows you to concatenate strings by means of plus operator. This kind of
concatenation is applicable to string variables/literals, character variables/literals. For control characters, use the non-
quoted hash sign and a numeral (e.g. #13 for CR).

MikroElektronika 206

mikroBasic PRO for dsPIC30/33 and PIC24

Here is an example:
dim msg as string[20]
res txt as string[5]

res, channel as word

main:

\

‘' Get result of ADC
res = Adc Read(channel)

‘' Create string out of numeric result
WordToStr (res, res txt)

‘' Prepare message for output

msg = “Result is “ + ' Text “Result is”
res txt ‘' Result of ADC

Notes:

- In current version plus operator for concatenating strings will accept at most two operands.
- mikroBasic PRO for dsPIC30/33 and PIC24 includes a String Library which automatizes string related tasks.

Pointers

A pointer is a data type which holds a memory address. While a variable accesses that memory address directly, a
pointer can be thought of as a reference to that memory address.

To declare a pointer data type, add a carat prefix (*) before type. For example, in order to create a pointer to an
integer, write:

“integer

In order to access data at the pointer’'s memory location, add a carat after the variable name. For example, let’s declare
variable p which points to a word, and then assign value 5 to the pointed memory location:

dim p as “word

p* =5

A pointer can be assigned to another pointer. However, note that only the address, not the value, is copied. Once you
modify the data located at one pointer, the other pointer, when dereferenced, also yields modified data.

201 MikroElektronika

mikoBasic PRO for dsPIC30/33 and PIC24

Pointers and memory spaces

Pointers can point to data in any available memory space.
Pointers can reside in any available memory space except in program (code) memory space.

dim ptrl as “const byte ‘' ptrl pointer in data space pointing to a byte in code space
dim ptr2 as “const “volatile sfr byte rx ‘' ptr2 is pointer in rx space pointing to a
pointer in code space pointing to volatile byte in sfr space

dim ptr3 as “data byte code ‘' error, pointers can not be placed in code space

Due to backward compatibility, pointers to program memory space can also be declared within constant declaration
block (using keyword const):

program const ptr

' constant array will be stored in program memory

const b array as byte[5] = (1,2,3,4,5)
const ptr as “byte ' ptr is pointer to program memory space
main:
ptr = @b _array ' ptr now points to b array[0]
PORTA = ptr”
ptr = ptr + 3 ' ptr now points to b array[3]
PORTA = ptr
end.

This leads to equality of the following declarations:

dim ptrl as “const byte ' ptrl pointer in data space pointing to a byte 1in code
space

const ptrl as "“byte ' ptrl pointer in data space pointing to a byte in code space
Therefore, when declaring a pointer within constant declaration block, const qualifier refers to pointed object, not to
pointer itself.

Notes:

- Pointer to constant space (Flash memory) is allocated in RAM.

- Constants of a simple type are not allocated in the Flash memory nor in RAM, but changed in the compile time, and
therefore address of a such constant can not be obtained.

Function Pointers

Function pointers are allowed in mikroBasic PRO for dsPIC30/33 and PIC24. The example shows how to define and
use a function pointer:

MikroElektronika 208

mikroBasic PRO for dsPIC30/33 and PIC24

Example:

Example demonstrates the usage of function pointers. It is shown how to declare a procedural type, a pointer to
function and finally how to call a function via pointer.

program Example;

typedef TMyFunctionType = sub function (dim paraml, param2 as byte, dim param3 as word)
as word ' First, define the procedural type

dim MyPtr as "TMyFunctionType ' This is a pointer to previously defined type
dim sample as word

sub function Funcl (dim pl, p2 as byte, dim p3 as word) as word ' Now, define few functions
which will be pointed to. Make sure that parameters match the type definition

result = pl and p2 or p3
end sub

sub function Func2 (dim abc, def as byte, dim ghi as word) as word ‘' Another function of
the same kind. Make sure that parameters match the type definition

result = abc * def + ghi
end sub
sub function Func3(dim first, yellow as byte, dim monday as word) as word ‘' Yet another
function. Make sure that parameters match the type definition
result = monday - yellow - first
end sub

‘" main program:

main:

MyPtr = @Funcl ‘' MyPtr now points to Funcl

Sample = MyPtr” (1, 2, 3) ‘' Perform function call via pointer, call Funcl, the return
value is 3

MyPtr = @Func? ‘' MyPtr now points to Func2

Sample = MyPtr” (1, 2, 3) ‘' Perform function call via pointer, call Func2, the return
value is 5

MyPtr = @Func3 ' MyPtr now points to Func3

Sample = MyPtr” (1, 2, 3) ‘' Perform function call via pointer, call Func3, the return
value is O
end.
@ Operator

The @ operator constructs a pointer to its operand. The following rules are applied to @:
- If X is a variable, @x returns a pointer to x.
Note: If variable x is of array type, the @ operator will return pointer to it’s first basic element, except when the left side

of the statement in which x is used is an array pointer.
In this case, the @ operator will return pointer to array, not to it’s first basic element.

209 MikroElektronika

mikoBasic PRO for dsPIC30/33 and PIC24

program example

dim w as word
ptr b as “byte
ptr arr as “byte[10]

arr as byte[10]
main:
ptr b = @arr ' @ operator will return “byte
w = @arr ' @ operator will return “byte
ptr arr = @arr ' @ operator will return "“byte[10]

end.
If £ is a routine (a function or procedure), @F returns a pointer to .

Related topics: Pointer Arithmetic

Pointer Arithmetic

Pointer arithmetic in the mikroBasic PRO for dsPIC30/33 and PIC24 is limited to:
- assigning one pointer to another,
- comparing two pointers,
- comparing pointer to zero,

- adding/subtracting pointer and an integer value,
- subtracting two pointers.

Assignment and Comparison
The simple assignment operator (=) can be used to assign value of one pointer to another if they are of the same type.
Assigning the integer constant 0 to a pointer assigns a null pointer value to it.

Two pointers pointing to the same array may be compared by using relational operators =, <>, <, <=, >, and >=.
Results of these operations are the same as if they were used on subscript values of array elements in question:

dim ptrl as “byte
ptr2 as “byte
a as byte[10] ‘' array a containing 10 elements of type byte

main:

ptrl = Qafl4]

ptr2 = Qal2]

if (ptrl = ptr2) then ... ‘' 'won’t be executed as 4 is not equal to 2

if (ptrl > ptr2) then ... ‘'will be executed as 4 is greater than 2

if (ptrl”® = ptr2”) then ... ' if the value pointed to by ptrl is equal to the value
pointed to by ptr2

if (ptrl” > ptr2”) then ... ' if the value pointed to by ptrl is greater to the value
pointed to by ptr2
end.

MikroElektronika 210

mikroBasic PRO for dsPIC30/33 and PIC24

Note: Comparing pointers pointing to different objects/arrays can be performed at programmer’s own responsibility — a
precise overview of data’s physical storage is required.

Pointer Addition

You can use Inc to add an integral value to a pointer. The result of addition is defined only if the pointer points to an
element of an array and if the result is a pointer pointing to the same array (or one element beyond it).

If a pointer is declared to point to t ype, adding an integral value n to the pointer increments the pointer value by n *
sizeof (type) as long as the pointer remains within the legal range (first element to one beyond the last element). If
type has a size of 10 bytes, then adding 5 to a pointer to t ype advances the pointer 50 bytes in memory.

For example:
dim
a as byte[10] ‘' array a containing 10 elements of type byte
ptr as “byte ‘' pointer to byte
main:
ptr = @al[0] ‘' ' ptr is pointer to byte, pointing to al[0]
ptr = ptr + 3 ‘' ptr+3 is a pointer pointing to a[3]
ptr® = 6 ‘“'al[3] now equals 6
Inc (ptr) ‘' ptr now points to the next element of array a: al4]
end.

Also, you may sum values pointed to by pointers.

For example:
dim
i, j, x as byte ' variables
ptrl as “byte ‘' pointers to byte

ptr2 as “byte

main

i =10 ‘' assign value 10 to variable; 1 1is at the address 0x0038

3 =25 ‘assign value 10 to variable; j 1is at the address 0x003A

ptrl = @i ‘' ptrl is pointer to byte, pointing to 1

ptr2 = @J ‘' ptr2 is a pointer pointing to j

X = ptrl” + ptr2” ‘' result is equal to the sum of the values pointed to; x = 5
end.

Pointer Subtraction
Similar to addition, you can use Dec to subtract an integral value from a pointer.

If a pointer is declared to point to type, subtracting an integral value n from the the pointer decrements the pointer
value by n * sizeof (type) as long as the pointer remains within the legal range (first element to one beyond the
last element). If t ype has a size of 10 bytes, then subtracting 5 from a pointer to t ype pushes back the pointer 50
bytes in memory.

21 MikroElektronika

mikoBasic PRO for dsPIC30/33 and PIC24

For example:

dim

a as byte[10]
ptr as “byte

main:

ptr = @a[6]
ptr = ptr - 3
ptr® = 6

Dec (ptr)

end.

‘' pointers to byte

assign value 10 to variable;
assign value 5 to variable;

\

\

\

array a containing 10 elements of type byte

pointer to byte

ptr is pointer to byte, pointing to al[6]
ptr-3 is a pointer pointing to al[3]

al[3] now equals 6

‘' ptr now points to the previous element of array a:

variables

i is at the address 0x0039
Jj is at the address 0x003A

ptrl is pointer to byte, pointing to 1

ptr2 is a pointer pointing to j

al2]

Also, you may subtract two pointers. The difference will be equal to the distance between two pointed addresses, and
is calculated regarding to the type which the pointer points to.

result is equal to the distance between the two pointed addresses;

\

result is equal to the difference of the values pointed to; x

=5

For example:
dim
i, j, x as byte '
ptrl as “byte
ptr2 as “byte
main:
i =10 !
j=5 ‘
ptrl = @1 !
ptr2 = @7 '
x = ptr2 - ptrl
=1 (1 byte)
= ptrl”® - ptr2”®
end
MikroElektronika

212

mikroBasic PRO for dsPIC30/33 and PIC24

Structures

A structure represents a heterogeneous set of elements. Each element is called a member; the declaration of a structure
type specifies a name and type for each member. The syntax of a structure type declaration is

structure structname
dim memberl as typel

\

dim membern as typen
end structure

where structname is a valid identifier, each type denotes a type, and each member is a valid identifier. The scope
of a member identifier is limited to the structure in which it occurs, so you don’t have to worry about naming conflicts
between member identifiers and other variables.
For example, the following declaration creates a structure type called Dot:
structure Dot
dim x as float
dim y as float
end structure
Each Dot contains two members: x and y coordinates; memory is allocated when you instantiate the structure, like this:
dim m, n as Dot
This variable declaration creates two instances of Dot, called m and n.
A member can be of the previously defined structure type. For example:
‘' Structure defining a circle:
structure Circle
dim radius as float

dim center as Dot
end structure

Structure Member Access

You can access the members of a structure by means of dot (.) as a direct member selector. If we had declared the
variables circlel and circle? of the previously defined type Circle:

dim circlel, circle2 as Circle

we could access their individual members like this:

circlel.radius = 3.7
circlel.center.x = 0
circlel.center.y = 0

You can also commit assignments between complex variables, if they are of the same type:

circle2 = circlel " This will copy values of all members

213 MikroElektronika

mikoBasic PRO for dsPIC30/33 and PIC24

Types Conversions

Conversion of variable of one type to a variable of another type is typecasting. mikroBasic PRO for dsPIC30/33 and
PIC24 supports both implicit and explicit conversions for built-in types.

Implicit Conversion
Compiler will provide an automatic implicit conversion in the following situations:

- statement requires an expression of particular type (according to language definition) and we use an
expression of different type,

- operator requires an operand of particular type and we use an operand of different type,

- function requires a formal parameter of particular type and we pass it an object of different type,

- resul t does not match the declared function return type.

Promotion

When operands are of different types, implicit conversion promotes the less complex type to more complex type taking
the following steps:

bit — Dbyte/char
byte/char - word
short — integer
short — longint

integer - longint
integral - float

Higher bytes of extended unsigned operand are filled with zeroes. Higher bytes of extended signed operand are filled
with bit sign (if number is negative, fill higher bytes with one, otherwise with zeroes). For example:

dim a as byte
dim b as word

\

a = SFF

b =a 'a is promoted to word, b becomes SO0FF
Clipping

In assignments and statements that require an expression of particular type, destination will store the correct value only
if it can properly represent the result of expression, i.e. if the result fits in destination range.

If expression evaluates to a more complex type than expected, excess of data will be simply clipped (higher bytes are
lost).

dim i as byte

dim j as word

j = SFFOF

i =73 Y i becomes S$0F, higher byte S$FF is lost

MikroElektronika 214

mikroBasic PRO for dsPIC30/33 and PIC24

Explicit Conversion

Explicit conversion can be executed at any point by inserting type keyword (byte, word, short, integer,
longint, or float) ahead of the expression to be converted. The expression must be enclosed in parentheses.
Explicit conversion can be performed only on the operand left of the assignment operator.

Special case is the conversion between signed and unsigned types. Explicit conversion between signed and unsigned
data does not change binary representation of data — it merely allows copying of source to destination.

For example:

dim a as byte
dim b as short

b= -1
byte (b) ‘'a is 255, not 1

o)
Il

This is because binary representation remains
‘11111111, it’s just interpreted differently now

You can’t execute explicit conversion on the operand left of the assignment operator:

word(b) = a ‘' Compiler will report an error

Conversions Examples
Here is an example of conversion:
program test

typedef TBytePtr as “byte

dim arr as word[10]
ptr as TBytePtr

dim a, b, cc as byte
dim dd as word

main:
a = 241
b = 128
cc =a+b ‘' equals 113
cc = word(a + b) ‘' equals 113
dd = a + b ‘' equals 369

ptr = TBytePtr (Qarr)
ptr = “byte(Rarr)
end.

215 MikroElektronika

mikoBasic PRO for dsPIC30/33 and PIC24

Typedef Specifier

The specifier typedef introduces a synonym for a specified type. The typedef declarations are used to construct
shorter or more convenient names for types already defined by the language or declared by the user.

The specifier t ypedet stands first in the declaration:

typedef synonym as <type definition>

The typedef keyword assigns synonymto <type definition> The synonymneeds to be a valid identifier.

A declaration starting with the t ypede £ specifier does not introduce an object or a function of a given type, but rather
a new name for a given type. In other words, the t ypede £ declaration is identical to a “normal” declaration, but instead
of objects, it declares types. It is a common practice to name custom type identifiers with starting capital letter — this is
not required by the mikroBasic PRO for dsPIC.

For example:

' Let’s declare a synonym for “word”
typedef Distance as word

' Now, synonym "“Distance” can be used as type identifier:
dim i as Distance ' declare variable i of word

In the t ypede £ declaration, as in any other declaration, several types can be declared at once. For example:
typedef “Pti, Array[l0] as byte

Here, Pt i is a synonym for type “pointer to int”, and Array is a synonym for type “array of 10 byte elements”.

Type Qualifiers

The type qualifiers const and volatile are optional in declarations and do not actually affect the type of declared
object.

Qualifier const

The qualifier const implies that a declared object will not change its value during runtime. In declarations with the
const qualifier all objects need to be initialized.

The mikroBasic PRO for dsPIC30/33 and PIC24 treats objects declared with the const qualifier the same as literals
or preprocessor constants. If the user tries to change an object declared with the const qualifier compiler will report
an error.

For example:

const PI as byte = 3.14159

MikroElektronika 216

mikroBasic PRO for dsPIC30/33 and PIC24

Qualifier volatile

The qualifier volatile implies that a variable may change its value during runtime independently from the program.
Use the volatile modifier to indicate that a variable can be changed by a background routine, an interrupt routine, or I/O
port. Declaring an object to be volatile warns the compiler not to make assumptions concerning the value of an object
while evaluating expressions in which it occurs because the value could be changed at any moment.

Operators

Operators are tokens that trigger some computation when being applied to variables and other objects in an
expression.

There are four types of operators in mikroBasic PRO for dsPIC30/33 and PIC24:
- Arithmetic Operators
- Bitwise Operators

- Boolean Operators
- Relational Operators

Operators Precedence and Associativity

There are 4 precedence categories in mikroBasic PRO for dsPIC30/33 and PIC24. Operators in the same category
have equal precedence with each other.

Each category has an associativity rule: left-to-right (), or right-to-left (). In the absence of parentheses, these rules
resolve the grouping of expressions with operators of equal precedence.

Precedence Operands Operators Associativity
4 1 @ not + - —
3 2 * / div mod and << >> | -
2 2 + - or XOr —
1 2 = <> < > <= >= —

Arithmetic Operators

Arithmetic operators are used to perform mathematical computations. They have numerical operands and return
numerical results. Since the char operators are technically bytes, they can be also used as unsigned operands in
arithmetic operations.

All arithmetic operators associate from left to right.

211 MikroElektronika

mikoBasic PRO for dsPIC30/33 and PIC24

Arithmetic Operators Overview

Operator Operation Operands Result
+ addition byte, short, word, integer, byte, short, word, inte-
longint, longword, float ger, longint, longword,
float
- subtraction byte, short, word, integer, byte, short, word, inte-
longint, longword, float ger, longint, longword,
float
* multiplication byte, short, word, integer, word, integer, longint,
longint, longword, float longword, float
/ division, floating-point byte, short, word, integer, |float
longint, longword, float
div division, rounds down to near- | byte, short, word, integer, byte, short, word, inte-
est integer longint, longword ger, longint, longword
mod modulus, returns the remain- | byte, short, word, integer, byte, short, word, inte-
der of integer division (cannot | 1ongint, longword ger, longint, longword
be used with floating points)

Division by Zero

If 0 (zero) is used explicitly as the second operand (i.e. x div 0), the compiler will report an error and will not gener-

ate code.

But in case of implicit division by zero: x div v, where v is 0 (zero), the result will be the maximum integer (i.e 255,
if the result is by te type; 65536, if the result is word type, etc.).

Unary Arithmetic Operators

Operator - can be used as a prefix unary operator to change sign of a signed value. Unary prefix operator + can be

used, but it doesn’t affect data.

For example:

218

mikroBasic PRO for dsPIC30/33 and PIC24

Relational Operators
Use relational operators to test equality or inequality of expressions. All relational operators return TRUE or FALSE.

All relational operators associate from left to right.

Relational Operators Overview

Operator Operation

= equal

<> not equal

> greater than

< less than

>= greater than or equal
<= less than or equal

Relational Operators in Expressions
The equal sign (=) can also be an assignment operator, depending on context.

Precedence of arithmetic and relational operators was designated in such a way to allow complex expressions with-
out parentheses to have expected meaning:

if aa + 5 > bb - 1.0 / cc then ' same as: if (aa + 5) >= (bb - (1.0 / cc)) then
dd = My Function()

end if
Bitwise Operators
Use bitwise operators to modify individual bits of numerical operands.

Bitwise operators associate from left to right. The only exception is the bitwise complement operator not which as-
sociates from right to left.

Bitwise Operators Overview

Operator | Operation

and bitwise AND; compares pairs of bits and returns 1 if both bits are 1, otherwise it returns 0

or bitwise (inclusive) OR; compares pairs of bits and generates a 1 result if either or both bits are 1, otherwise it returns 0

Xor bitwise exclusive OR (XOR); compares pairs of bits and generates a 1 result if the bits are complementary, otherwise
it returns 0

not bitwise complement (unary); inverts each bit

<< bitwise shift left; moves the bits to the left, discards the far left bit and assigns 0 to the right most bit.

>> bitwise shift right; moves the bits to the right, discards the far right bit and if unsigned assigns 0 to the left most bit,
otherwise sign extends

219 MikroElektronika

mikoBasic PRO for dsPIC30/33 and PIC24

Logical Operations on Bit Level

and |0 1 or 0 1 xor |0 1 not (0 1
0 0 0 0 0 1 0 1 1 0
1 0 1 1 1 1 0

The bitwise operators and, or, and xor perform logical operations on the appropriate pairs of bits of their oper-
ands. The operator not complements each bit of its operand. For example:

$1234 and $5678 ' equals $1230
' because ..

‘' §1234 : 0001 0010 0011 0100
‘' §5678 : 0101 0110 0111 1000

v

! and : 0001 0010 0011 0000

‘.. that is, $1230

‘'"Similarly:

$1234 or $5678 ' equals $567C
$1234 xor $5678 ' equals $444cC
not $1234 ' equals $SEDCB

Unsigned and Conversions

If a number is converted from less complex to more complex data type, the upper bytes are filled with zeroes. If a
number is converted from more complex to less complex data type, the data is simply truncated (the upper bytes are
lost).

For example:

dim a as byte

dim b as word

\

= SAA

SFOFO

= b and a

a is extended with zeroes; b becomes S00A0

-0 o0 o -
I

MikroElektronika 220

mikroBasic PRO for dsPIC30/33 and PIC24

Signed and Conversions

If number is converted from less complex to more complex data type, the upper bytes are filled with ones if sign bit is
1 (number is negative); the upper bytes are filled with zeroes if sign bit is 0 (number is positive). If number is converted
from more complex to less complex data type, the data is simply truncated (the upper bytes are lost).

For example:

dim a as byte

dim b as word
a = -12

= $T70FF

b = Db and a

o
|

‘'a is sign extended, upper byte is SFF;
‘' b becomes S70F4

Bitwise Shift Operators

The binary operators << and >> move the bits of the left operand by a number of positions specified by the right
operand, to the left or right, respectively. Right operand has to be positive and less than 255.

With shift left (<<), left most bits are discarded, and “new” bits on the right are assigned zeroes. Thus, shifting unsigned
operand to the left by n positions is equivalent to multiplying it by 2" if all discarded bits are zero. This is also true for
signed operands if all discarded bits are equal to the sign bit.

With shift right (>>), right most bits are discarded, and the “freed” bits on the left are assigned zeroes (in case of
unsigned operand) or the value of the sign bit (in case of signed operand). Shifting operand to the right by n positions
is equivalent to dividing it by 2".

Boolean Operators

Although mikroBasic PRO for dsPIC30/33 and PIC24 does not support boolean type, you have Boolean operators at
your disposal for building complex conditional expressions. These operators conform to standard Boolean logic, and
return either TRUE (all ones) or FALSE (zero):

Operator Operation

and logical AND

or logical OR

XOor logical exclusive OR (XOR)
not logical negation

Boolean operators associate from left to right. Negation operator not associates from right to left.

221 MikroElektronika

mikoBasic PRO for dsPIC30/33 and PIC24

Unary Operators

Unary operators are operators that take exactly one argument.

Unary Arithmetic Operator

Operator - can be used as a prefix unary operator to change sign of a signed value. Unary prefix operator + can be
used also, but it doesn’t affect data.

For example:

b = -a

Unary Bitwise Operator

The result of the not (bitwise negation) operator is the bitwise complement of the operand. In the binary representation
of the result, every bit has the opposite value of the same bit in the binary representation of the operand.

Operator Operation

not bitwise complement (unary); inverts each bit
Example:
not 0x1234 ' equals OxEDCB

Address and Indirection Operator

In the mikroBasic PRO for dsPIC, address of an object in memory can be obtained by means of an unary operator @.
To reach the pointed object, we use an indirection operator ~ on a pointer. See Pointers section for more details.

Operator Operation

~ accesses a value indirectly, through a pointer; result is the value at the address to
which operand points

@ constructs a pointer to its operand

See Pointers for more details on this subject

Note: Besides these, sizeof and explicit conversion unary operators are supported also.

MikroElektronika 222

mikroBasic PRO for dsPIC30/33 and PIC24

Sizeof Operator

The prefix unary operator sizeof returns an integer constant that represents the size of memory space (in bytes) used
by its operand (determined by its type, with some exceptions).

The operator sizeof can take either a type identifier or an unary expression as an operand. You cannot use sizeof

with expressions of function type, incomplete types, parenthesized names of such types, or with Ivalue that designates
a bit field object.

Sizeof Applied to Expression

If applied to expression, the size of an operand is determined without evaluating the expression (and therefore without
side effects). The result of the operation will be the size of the type of the expression’s result.

Sizeof Applied to Type

If applied to a type identifier, sizeof returns the size of the specified type. The unit for type size is sizeof (byte)
which is equivalent to one byte.

Thus:

sizeof (byte) '\ returns 1
sizeof (integer) '\ returns 2
sizeof (longword) ' returns 4
sizeof (float) ' returns 4

When the operand is a non-parameter of array type, the result is the total number of bytes in the array (in other words,
an array name is not converted to a pointer type):

dim i, j as integer
samples as integer|[7]

J = sizeof (samples[1l]) ‘'j = sizeof(integer) = 2
i sizeof (samples) ‘"1 = 10*sizeof (integer) = 20

If the operand is a parameter declared as array type or function type, sizeof gives the size of the pointer. When
applied to structures, sizeof gives the total number of bytes, including any padding. The operator sizeof cannot be
applied to a function.

223 MikroElektronika

mikoBasic PRO for dsPIC30/33 and PIC24

Expressions
An expression is a sequence of operators, operands and punctuators that returns a value.

The primary expressions include: literals, constants, variables and function calls. From them, using operators, more
complex expressions can be created. Formally, expressions are defined recursively: subexpressions can be nested
up to the limits of memory.

Expressions are evaluated according to certain conversion, grouping, associativity and precedence rules which
depend on the operators in use, presence of parentheses and data types of the operands. The precedence and asso-
ciativity of the operators are summarized in Operator Precedence and Associativity. The way operands and subex-
pressions are grouped does not necessarily specify the actual order in which they are evaluated by mikroBasic PRO
for dsPIC30/33 and PIC24.

Expression Evaluation
General Rule

Expression are evaluated according to the right side operands. Operations are done at higher operand level, with
signed operands taking precedence.

Example:
a as byte

as word
c as integer

o

a * b ' word level
a * ¢ ' integer level
b * ¢ ' integer level

Left side exception

In arithmetic expression left side is considered in the following manner: If the left side size in bytes is greater than
higher operand size, then evaluation is done at one level above higher operand level (to get correct calculations).

Example:

a as longword
b as byte

a =Db * 5 ' this is done at word level

MikroElektronika 224

mikroBasic PRO for dsPIC30/33 and PIC24

Conditional expressions
Conditional expressions may differ from the same code in assignment expressions (due to left side exception).
Example:

a as longword

b as byte

if b*5 then... " byte level - general rule will not give same result as
a=Db *5 ‘' word level - general rule + left side exception

if a then...

if b*5 exceeds byte range.

Explicit Typecasting

Any expression can be evaluated at specific level by using explicit typecasting. Having in mind previous example, in
order to get same calculation in conditional and assignment expression, the following should be done:

if word(b*5) then... " word level

Statements

Statements define algorithmic actions within a program. Each statement needs to be terminated with a semicolon
(;)- In the absence of specific jump and selection statements, statements are executed sequentially in the order of
appearance in the source code.

The most simple statements are assignments, procedure calls and jump statements. These can be combined to form
loops, branches and other structured statements.

Refer to:
- Assignment Statements
- Conditional Statements
- lteration Statements (Loops)

- Jump Statements

- asm Statement

225 MikroElektronika

mikoBasic PRO for dsPIC30/33 and PIC24

Assignment Statements
Assignment statements have the following form:
variable = expression

The statement evaluates expression and assigns its value to variable. All the rules of implicit conversion are
applied. variable can be any declared variable or array element, and expression can be any expression.

Do not confuse the assignment with relational operator = which tests for equality. mikroBasic PRO for dsPIC30/33 and
PIC24 will interpret the meaning of the character = from the context.

Conditional Statements

Selection or flow-control statements select one of alternative courses of action by testing certain values. There are two
types of selection statements:

- if
- select case

If Statement

Use the keyword 1 f to implement a conditional statement. The syntax of the i £ statement has the following form:

if expression then
statements
[else
other statements]
end if

When expression evaluates to true, statements execute. If expression is false, other statements execute.
The expression must convert to a boolean type; otherwise, the condition is ill-formed. The e1se keyword with an
alternate block of statements (other statements)is optional.

Nested if statements

Nested if statements require additional attention. A general rule is that the nested conditionals are parsed starting from
the innermost conditional, with each 1 se bound to the nearest available if on its left:

if expressionl then
if expression? then
statementl

else

statement?2

end if

end if

MikroElektronika 226

mikroBasic PRO for dsPIC30/33 and PIC24

The compiler treats the construction in this way:

if expressionl then
if expression2 then
statementl
else
statement?2
end if
end if

In order to force the compiler to interpret our example the other way around, we have to write it explicitly:

if expressionl then
if expression2 then
statementl
end if
else
statement?2
end if

Select Case Statement

Use the select case statement to pass control to a specific program branch, based on a certain condition. The
select case statement consists of selector expression (condition) and list of possible values. The syntax of the
select case statementis:

select case selector
case value 1
statements 1

case value n
statements n
[case else
default statements]
end select

selector is an expression which should evaluate as integral value. values can be literals, constants or expressions
and statements can be any statements. The case else clause is optional.

First, the selector expression (condition) is evaluated. The seiect case statement then compares it against
all available values. If the match is found, the statements following the match evaluate, and the select case
statement terminates. In case there are multiple matches, the first matching statement will be executed. If none of
the values matches the selector, then default statements in the case else clause (if there is one) are
executed.

221 MikroElektronika

mikoBasic PRO for dsPIC30/33 and PIC24

Here is a simple example of the select case statement:

select case operator

case “*”

res = nl * n2
case “/”

res = nl / n2
case “t+”

res = nl + n2
case “-”

res = nl - n2
case else

res = 0

cnt = cnt + 1

end select
Also, you can group values together for a match. Simply separate the items by commas:

select case reg
case 0
opmode
case 1,2,
opmode
case 5,0,
opmode
end select

’

1 w |
_ s O

N

Nested Case Statements

Note that the se1ect case statements can be nested — va 1 ues are then assigned to the innermost enclosing select
case statement.

Iteration Statements

Iteration statements let you loop a set of statements. There are three forms of iteration statements in mikroBasic PRO
for dsP1C30/33 and PIC24:

- for
- while
-do

You can use the statements break and continue to control the flow of a loop statement. b rezk terminates the statement
in which it occurs, while cont inue begins executing the next iteration of the sequence.

MikroElektronika 228

mikroBasic PRO for dsPIC30/33 and PIC24

For Statement

The for statement implements an iterative loop and requires you to specify the number of iterations. The syntax of the
for statement is:

for counter = initial value to final value [step step value]
statement 1list
next counter

counter is a variable which increments with each iteration of the loop. Before the first iteration, counter is set to
initial value and will increment until it reaches final value. final value will be recalculated each time the
loop is reentered.

This way number of loop iterations can be changed inside the loop by changing 7inal value. With each iteration,
statement 1ist will be executed.

initial value and final value should be expressions compatible with counter; statement 1ist may be
consisted of statements that don’t change the value of the counter.

Note that the parameter step value may be negative, allowing you to create a countdown.

If inal value is a complex expression whose value can not be calculated in compile time and number of loop
iterations is not to be changed inside the loop by the means of final value, it should be calculated outside the for
statement and result should be passed as for statement’s final value. statement 1istis a list of statements that
do not change the value of counter.

Here is an example of calculating scalar product of two vectors, 2 and b, of length 10, using the for statement:

=0 to 9
s + ali] * b[i]

0]
I
I = o

next i

Endless Loop

The for statement results in an endless loop if final value equals or exceeds the range of the counter’s type.

While Statement
Use the whi 1e keyword to conditionally iterate a statement. The syntax of the whi 1 e statement is:
while expression

statements

wend

statements are executed repeatedly aslong as expressionevaluates true. The test takes place before statements
are executed. Thus, if expression evaluates false on the first pass, the loop does not execute.

229 MikroElektronika

mikoBasic PRO for dsPIC30/33 and PIC24

Here is an example of calculating scalar product of two vectors, using the whi1e statement:

s =0

i=20

while i < n
s = s + al[i] * b[i]
i=1+1

wend

Probably the easiest way to create an endless loop is to use the statement:
while TRUE

\

wend

Do Statement

The do statement executes until the condition becomes true. The syntax of the do statement is:
do
statements

loop until expression

statements are executed repeatedly until expression evaluates true. expressionis evaluated after each iteration,
so the loop will execute statements at least once.

Here is an example of calculating scalar product of two vectors, using the do statement:

s =0

i=20

do
s = s + al[i] * b[i]
i=1+1

loop until i = n

MikroElektronika 230

mikroBasic PRO for dsPIC30/33 and PIC24

Jump Statements

The jump statement, when executed, transfers control unconditionally. There are five such statements in mikroBasic
PRO for dsPIC30/33 and PIC24:

- break

- continue
- exit

- goto

- gosub

Break and Continue Statements

Break Statement

Sometimes, you might need to stop the loop from within its body. Use the break statement within loops to pass control
to the first statement following the innermost loop (for, while, or do).

For example:

Lecd Out(l, 1, “No card inserted”)

' Wait for CF card to be plugged,; refresh every second
while true
if Cf Detect() = 1 then
break
end if
Delay ms(1000)
wend

' Now we can work with CF card ...
Lcd Out (1, 1, “Card detected)

Continue Statement
You can use the continue statement within loops to “skip the cycle”:

- continue statement in the for loop moves program counter to the line with keyword for after incrementing the
counter,

- continue statementin the while loop moves program counter to the line with loop condition (top of the loop),

- continue statementin the do loop moves program counter to the line with loop condition (bottom of the loop).

‘' continue jumps here ‘' continue jumps here do

for i = ... while condition .
L . continue
continue continue

. L ‘' continue jumps here
next i wend loop until condition

231 MikroElektronika

mikoBasic PRO for dsPIC30/33 and PIC24

Exit Statement

The exit statement allows you to break out of a routine (function or procedure). It passes the control to the first
statement following the routine call.

Here is a simple example:

sub procedure Procl ()
dim error as byte

. ' we’re doing something here

if error = TRUE then

exit
end if
' some code, which won’t be executed if error is true

end sub

Note: If breaking out of a function, return value will be the value of the local variable result at the moment of exit.

Return Statement

The return statement causes execution to leave the current subroutine and resume at the point in the code immediately
after where the subroutine was called. It's mainly intended to be used with gosub statement.

Return statement suffers from the same sort of readability problems as the GOTO statement and like goto, the use of
return statement is generally discouraged.

Here is a simple example:

sub procedure Procl ()
dim error as byte

. ' we’re doing something here

if error = TRUE then

return
end if
‘' some code, which won’t be executed if error is true

end sub

Note: Return statements performs the same as exit statement except in functions. If breaking out of a function with
return statement, return value will not be specified. In such cases exit statement should be used.

Goto Statement

Use the goto statement to unconditionally jump to a local label — for more information, refer to Labels. The syntax of
the goto statement is:

goto label name

This will transfer control to the location of a local label specified by 1abel name. The goto line can come before or
after the label.

MikroElektronika 232

mikroBasic PRO for dsPIC30/33 and PIC24

Label and goto statement must belong to the same block. Hence it is not possible to jump into or out of a procedure
or function.

You can use goto to break out from any level of nested control structures. Never jump into a loop or other structured
statement, since this can have unpredictable effects.

The use of goto statement is generally discouraged as practically every algorithm can be realized without it, resulting
in legible structured programs. One possible application of the goto statement is breaking out from deeply nested
control structures:

for i = 0 ton
for 3 = 0 tom

if disaster
goto Error

end if
next j
next i
Error: Y error handling code

Gosub Statement

Use the gosub statement to unconditionally jump to a local label — for more information, refer to Labels. The syntax
of the gosub statement is:

gosub Ilabel name

iééeliname:

return

This will transfer control to the location of a local label specified by 1abel name. Also, the calling point is remembered.
Upon encountering the return statement, program execution will continue with the next statement (line) after gosub.

The gosub line can come before or after the label.

It is not possible to jump into or out of routine by means of gosub. Never jump info a loop or other structured statement,
since this can have unpredictable effects.

Note: Like with goto, the use of gosub statement is generally discouraged. mikroBasic PRO for dsPIC30/33 and
PI1C24 supports gosub only for the sake of backward compatibility. It is better to rely on functions and procedures,
creating legible structured programs.

233 MikroElektronika

mikoBasic PRO for dsPIC30/33 and PIC24

asm Statement

mikroBasic PRO for dsPIC30/33 and PIC24 allows embedding assembly in the source code by means of the asm
statement. Note that you cannot use numerals as absolute addresses for register variables in assembly instructions.
You may use symbolic names instead (listing will display these names as well as addresses).

You can group assembly instructions with the 2 sm keyword:

asm
block of assembly instructions
end asm

The only types whose name remains the same in asm as it is in the mikroBasic PRO for dsPIC30/33 and PIC24 are
registers, e.g. INTCON, PORTB, WREG, GIE, etc.

mikroBasic PRO for dsPIC30/33 and PIC24 comments are allowed in embedded assembly code.

Accessing variables
Depending on the place of declaration, accessing a variable can be done in several ways :

- Accessing global variable:

1. If declared under implementation section (visible only in the file where it was declared):
<source file name> <variable name>.

2. If declared in the interface section (visible throughout the whole project): <variable name>.

3. If accessing registers (declared through register, rx or sfr specifiers, visible throughout the whole
project): <variable name>.

- Accessing local variable: <routine name> <variable name>.

- Accessing routine parameter: FARG <routine name> <variable name>.

Here is an example of using asm instructions:
program asm example

dim myvar as word absolute 0x2678
dim myvarl as longword
const msg = “Hello” org 0x1234

sub procedure proc () org 0x2346
asm
nop
end asm
end sub

main
myvar = 5
myvarl = 0xABCD1234

MikroElektronika 234

mikroBasic PRO for dsPIC30/33 and PIC24

asm
MOV myvar, wO ; move myvar to WO
nop
MOV #6, WO ; move literal 6 to WO
MOV WO, myvar ; move contents of WO to myvar

MOV #loﬁaddr ((myvar), wl ; retrieve low address word of _myvar and move it to Wl (0x2678 —> W1l)
MOV #hi addr (myvar), Wl ; retrieve high address word of myvar and move it to Wl (0x0000 -> W1)
MOV #lo addr (_proc), WO ; retrieve hi address byte of routine proc and move it to WO (0x0001 —> W1)
MOV #loﬁaddr (. msg), WO ; retrieve low address word of constant msg and move it to WO (0x3652 -> W1)
MOV myvarl+2, w0 ; accessing hi word of myvarl variable and move it to Wl (OxABCD -> Wl)
end asm

end.

Asm code and SSA optimization

If asm code is mixed with the Basic code, keep in mind that the generated code can substantially differ when SSA
optimization option is enabled or disabled.

This is due to the fact that SSA optimization uses certain working registers to store routine parameters (W10-W13),
rather than storing them onto the function frame.

Because of this, user must be very careful when writing asm code as existing values in the working registers used by

SSA optimization can be overwritten.
To avoid this, it is recommended that user includes desired asm code in a separate routine.

Directives
Directives are words of special significance which provide additional functionality regarding compilation and output.
The following directives are at your disposal:

- Compiler directives for conditional compilation,
- Linker directives for object distribution in memory.

Compiler Directives

Any line in source code with leading # is taken as a compiler directive. The initial # can be preceded or followed by
whitespace (excluding new lines). The compiler directives are not case sensitive.

You can use conditional compilation to select particular sections of code to compile while excluding other sections. All
compiler directives must be completed in the source file in which they begun.

239 MikroElektronika

mikoBasic PRO for dsPIC30/33 and PIC24

Directives #DEFINE and #UNDEFINE

Use directive #DEFINE to define a conditional compiler constant (“flag”). You can use any identifier for a flag, with no
limitations. No conflicts with program identifiers are possible because the flags have a separate name space. Only one
flag can be set per directive.

For example:
#DEFINE extended format

Use #UNDEFINE to undefine (“clear”) previously defined flag.

Directives #IFDEF, #lFNDEF, #ELSE and #ENDIF

Conditional compilation is carried out by the #TFDEF and #IFNDEF directives. # IFDEF tests whether a flag is currently
defined, and # TFNDEF if the flag is not defined; i.e. whether a previous #DEFINE directive has been processed for that
flag and is still in force.

Directives # IFDEF and #IFNDEF are terminated with the # ENDIF directive and can have an optional #ELSE clause:

#IFDEF flag THEN

block of code
[#ELSE

alternate block of code]
#ENDIF

First, # TFDEF checks if flag is defined by means of #DEFINE. If so, only block of code will be compiled. Otherwise,
alternate block of code in #ELSE (if any) will be compiled. #ENDIF ends the conditional sequence. The result of the
preceding scenario is that only one section of code (possibly empty) is passed on for further processing. The processed
section can contain further conditional clauses, nested to any depth; each #TFDEF must be matched with a closing
#ENDIF.

Here is an example:
‘' Uncomment the appropriate flag for your application:
‘#DEFINE resolutionlO
‘#DEFINE resolutionl2

#IFDEF resolutionlO THEN
// <code specific to 10-bit resolution>
#ELSE
#IFDEF resolutionl2 THEN
// <code specific to 12-bit resolution>
#ELSE
// <default code>
#ENDIF
#ENDIF

Unlike #TFDEF, #IFNDEF checks if flag is not defined by means of #DEFINE, thus producing the opposite results.

MikroElektronika 236

mikroBasic PRO for dsPIC30/33 and PIC24

Include Directive #l

The #1 parameter directive instructs mikroBasic PRO for dsPIC30/33 and PIC24 to include the named text file in the
compilation. In effect, the file is inserted in the compiled text right after the # 1 filename directive. If filename does not
specify a directory path, then, in addition to searching for the file in the same directory as the current unit, mikroBasic
PRO for dsPIC30/33 and PIC24 will search for file in order specified by the search paths.

To specify a filename that includes a space, surround the file name with quotation marks: #1 “My file”.

There is one restriction to the use of include files: An include file can’t be specified in the middle of a statement part. In
fact, all statements between the begin and end of a statement part must exist in the same source file.

See also Predefined Project Level Defines.

Linker Directives

mikroBasic PRO for dsPIC30/33 and PIC24 uses internal algorithm to distribute objects within memory. If you need to
have a variable or routine at the specific predefined address, use the linker directives absolute and org.

Directive absolute

Directive absolute specifies the starting address in RAM for a variable. If the variable is multi-byte, higher bytes will
be stored at the consecutive locations.

Directive absolute is appended to declaration of a variable:

' Variable x will occupy 1 word (16 bits) at address 0x32
dim x as word absolute 0x32

‘" Variable y will occupy 2 words at addresses 0x34 and 0x36
dim y as longint absolute 0x34

Be careful when using absolute directive, as you may overlap two variables by accident. For example:

dim 1 as word absolute 0x42
‘' Variable i will occupy 1 word at address 0x42;

dim jj as longint absolute 0x40
' Variable will occupy 2 words at 0x40 and 0x42; thus,
' changing i1 changes jj at the same time and vice versa

231 MikroElektronika

mikoBasic PRO for dsPIC30/33 and PIC24

Directive org

Directive org specifies the starting address of a constant or a routine in ROM. It is appended to the constant or a
routine declaration.

To place a constant array in Flash memory, write the following:

‘' Constant array MONTHS will be placed starting from the address 0x800
const MONTHS as byte[l12] = (31,28,31,30,31,30,31,31,30,31,30,31) org 0x800

If you want to place simple type constant into Flash memory, instead of following declaration:

const SimpleConstant as byte = O0xAA org 0x2000

use an array consisting of single element:

const SimpleConstant as byte[l] = (0xAA) org 0x800

In first case, compiler will recognize your attempt, but in order to save Flash space, and boost performance, it will
automatically replace all instances of this constant in code with it’s literal value.

In the second case your constant will be placed in Flash in the exact location specified.

To place a routine on a specific address in Flash memory you should write the following:

sub procedure proc (dim par as word) org 0x200
' Procedure will start at the address 0x200;

éﬁ& sub

org directive can be used with ma in routine too. For example:

program Led Blinking

main: org 0x800 ' main procedure starts at 0x800

end

Directive orgall
Use the orgall directive to specify the address above which all routines and constants will be placed. Example:
main:

orgall (0x200) ‘' All the routines, constants in main program will be above the address

0x200

end.

MikroElektronika 238

mikroBasic PRO for dsPIC30/33 and PIC24

CHAPTER 9

mikroBasic PRO for dsPIC30/33
and PIC24 Libraries

mikroBasic PRO for dsPIC30/33 and PIC24 provides a set of libraries which simplify the initialization and use of
dsPIC30/33 and PIC24 and their modules:

Use Library manager to include mikroBasic PRO for dsPIC30/33 and PIC24 Libraries in you project.

239 MikroElektronika

mikoBasic PRO for dsPIC30/33 and PIC24

Hardware Libraries

- ADC Library

- CAN Library

- CANSPI Library

- Compact Flash Library

- Enhanced CAN Library

- EEPROM Library

- Epson S1D13700 Graphic Lcd Library
- Flash Memory Library

- Graphic Lcd Library

- I*C Library

- Keypad Library

- Lcd Library

- Manchester Code Library

- Multi Media Card Library

- OneWire Library

- Peripheral Pin Select Library
- Port Expander Library

- PS/2 Library

- PWM Library

- PWM Motor Library

- RS-485 Library

- Software I12C Library

- Software SPI Library

- Software UART Library

- Sound Library

- SPI Library

- SPI Ethernet Library

- SPI Ethernet ENC24J600 Library
- SPI Graphic Lcd Library

- SPI Lcd Library

- SPI Lcd8 Library

- SPI T6963C Graphic Lcd Library
- T6963C Graphic Lcd Library
- TFT Display Library

- Touch Panel Library

- Touch Panel TFT Library

- UART Library

- USB Library

Digital Signal Processing Libraries

- FIR Filter Library

- lIR Filter Library

- FFT Library

- Bit Reverse Complex Library
- Vectors Library

- Matrices Library

MikroElektronika 240

mikroBasic PRO for dsPIC30/33 and PIC24

Miscellaneous Libraries

- Button Library

- C Type Library

- Conversions Library
- Setjmp Library

- String Library

- Time Library

- Trigon Library

- Trigonometry Library

See also Built-in Routines.

241 MikroElektronika

mikoBasic PRO for dsPIC30/33 and PIC24

Hardware Libraries

- ADC Library

- CAN Library

- CANSPI Library

- Compact Flash Library

- Enhanced CAN Library

- EEPROM Library

- Epson S1D13700 Graphic Lcd Library
- Flash Memory Library

- Graphic Lcd Library

- I*C Library

- Keypad Library

- Lcd Library

- Manchester Code Library

- Multi Media Card Library

- OneWire Library

- Peripheral Pin Select Library
- Port Expander Library

- PS/2 Library

- PWM Library

- PWM Motor Library

- RS-485 Library

- Software I12C Library

- Software SPI Library

- Software UART Library

- Sound Library

- SPI Library

- SPI Ethernet Library

- SPI Ethernet ENC24J600 Library
- SPI Graphic Lcd Library

- SPI Lcd Library

- SPI Lcd8 Library

- SPI T6963C Graphic Lcd Library
- T6963C Graphic Lcd Library
- TFT Display Library

- Touch Panel Library

- Touch Panel TFT Library

- UART Library

- USB Library

ADC Library

ADC (Analog to Digital Converter) module is available with a number of dsPIC30/33 and PIC24 MCU modules. ADC is
an electronic circuit that converts continuous signals to discrete digital numbers. ADC Library provides you a comfortable
work with the module.

MikroElektronika 242

mikroBasic PRO for dsPIC30/33 and PIC24

Library Routines

- ADCx_Init

- ADCx_Init_Advanced
- ADCx_Get_Sample

- ADCx_Read
-ADC_Set_Active

ADCx_Init

Prototype sub procedure ADCx Init ()

Description | This routines configures ADC module to work with default settings.
The internal ADC module is set to:

- single channel conversion

- 10-bit conversion resolution
- unsigned integer data format
- auto-convert

- VRef+ : Avdd, VRef- : AVss
- instruction cycle clock

- conversion clock : 32*Tcy

- auto-sample time : 31TAD

Parameters | None.

Returns Nothing.

Requires - MCU with built-in ADC module.
- ADC library routines require you to specify the module you want to use. To select the desired ADC
module, simply change the letter x in the routine prototype for a number from 1 to 2.

Example ADC1 Init() ‘" Initialize ADC1 module with default settings

Notes - Number of ADC modules per MCU differs from chip to chip. Please, read the appropriate datasheet
before utilizing this library.

243 MikroElektronika

mikoBasic PRO for dsPIC30/33 and PIC24

ADCXx_Init_Advanced

Prototype ' dsPIC30F and PIC24FJ prototype
sub procedure ADCl Init Advanced(dim Reference as word)
' dsPIC33FJ and PIC24HJprototype
sub procedureADCx Init Advanced(dim ADCMode as word, dim Reference as
word)
Description | This routine configures the internal ADC module to work with user defined settings.
Parameters | - ADCMode: resolution of the ADC module.
- Reference: voltage reference used in ADC process.
Description Predefined library const
ADC mode:
10-bit resolution _ADC 10bit
12-bit resolution _ADC 12bit
Voltage reference
Internal voltage reference ~_ADC INTERNAL REF
External voltage reference _ADC_EXTERNAL REF
Returns Nothing.
Requires - MCU with built-in ADC module.
- ADC library routines require you to specify the module you want to use. To select the desired ADC
module, simply change the letter x in the routine prototype for a number from 1 to 2.
Example ADC1 Init Advanced(ADC 10bit, ADC INTERNAL REF) ' sets ADC module in 12-
bit resolution mode with internal reference used
Notes - Number of ADC modules per MCU differs from chip to chip. Please, read the appropriate datasheet
before utilizing this library.
- Not all MCUs support advanced configuration. Please, read the appropriate datasheet before utilizing
this library.

MikroElektronika 244

mikroBasic PRO for dsPIC30/33 and PIC24

ADCx_Get_Sample

Prototype

sub function ADCx Get Sample (dim channel as word) as word

Description

The function enables ADC module and reads the specified analog channel input.

Parameters

- channel represents the channel from which the analog value is to be acquired.

Returns

10-bit or 12-bit (depending on selected mode by ADCx_Init_Advanced or MCU) unsigned value from
the specified channel.

Requires

- The MCU with built-in ADC module.

- Prior to using this routine, ADC module needs to be initialized. See ADCx_Init and ADCx_lInit_
Advanced.

- ADC library routines require you to specify the module you want to use. To select the desired ADC
module, simply change the letter x in the routine prototype for a number from 1 to 2.

- Before using the function, be sure to configure the appropriate TRISx bits to designate pins as
inputs.

Example

dim adc value as word

adc value = ADCl Get Sample(10) ' read analog value from ADCI module channel 10

Notes

- Number of ADC modules per MCU differs from chip to chip. Please, read the appropriate datasheet
before utilizing this library.

- The function sets the appropriate bit in the ADPCFG registers to enable analog function of the
chosen pin.

- Refer to the appropriate Datasheet for channel-to-pin mapping.

ADCx_Read

Prototype

sub function ADCx Read(dim channel as word) as word

Description

The function initializes, enables ADC module and reads the specified analog channel input.

Parameters

- channel represents the channel from which the analog value is to be acquired.

Returns

10-bit or 12-bit (depending on the MCU) unsigned value from the specified channel.

Requires

- The MCU with built-in ADC module.

- ADC library routines require you to specify the module you want to use. To select the desired ADC
module, simply change the letter x in the routine prototype for a number from 1 to 2.

- Number of ADC modules per MCU differs from chip to chip. Please, read the appropriate datasheet
before utilizing this library.

- Before using the function, be sure to configure the appropriate TRISx bits to designate pins as
inputs.

Example

dim adc value as word

adc_value = ADCl Read(10) ' read analog value from ADCI1 module channel 10

Notes

- This is a standalone routine, so there is no need for a previous initialization of ADC module.

- The function sets the appropriate bit in the ADPCFG registers to enable analog function of the
chosen pin.

- Refer to the appropriate Datasheet for channel-to-pin mapping.

285

mikoBasic PRO for dsPIC30/33 and PIC24

ADC_Set_Active

Prototype sub procedure ADC Set Active(dim adc gs as "“TADC Get Sample)
Description | Sets active ADC module.
Parameters | Parameters:
- adc_gs: ADCx_Get_Sample handler.
Returns Nothing.
Requires Routine is available only for MCUs with multiple ADC modules.
Used ADC module must be initialized before using this routine. See ADCx_Init and ADCx_lInit_
Advanced routines.
Example ' Activate ADCZ2 module
ADC Set Active (GADC2 Get Sample)
Notes None.

Library Example

This code snippet reads analog value from the channel 1 and sends readings as a text over UART1.

Copy Code To Clipboard

program ADC on LEDs
dim ADCresult as word
txt as char[6]

main:
PORTB = 0x0000 ‘' clear PORTB
TRISB = OxFFFF ‘' PORTB is input
ADC1 Init() ‘' Enable ADC module
UART1 Init(9600) V' Initialize UART communication

while TRUE

ADCresult = ADC1l Get Sample (1) ‘' Acquire ADC sample
WordToStr (ADCresult, txt) ‘' convert its value to string
UART1 Write Text (txt) ‘' and send it to UART terminal
Delay ms (50)
wend
end.

MikroElektronika 246

mikroBasic PRO for dsPIC30/33 and PIC24

RS-232 % Olo rj'
CON O/@ Q O 0 OE O SUB-D 9p

o : CONNECT Receive
- . MCU TO PC data (Rx)
i i i —h—

SERIAL

cABLE

l L : l CONMNECT “

C ' Send
Co FeTomey Data (Tx)

SUB-D 9p
T vCcC i h
(] [
T RB1 i
L =
) [Q. i
| &
vee] E 1
fouF OECILLATOR [i n i
il vCC i
[l { } I—done &)
e = veof1E osc1 G i
J0uF e | 12 e = m]:i——l_ I — [
|_|—=—| £ ; ":::dq]T L H) RR2]]:_

10uF [: [u_ M'““““J 1112 i RI—‘3]
T o ::]“}— I i
-] E‘“‘ %] reaowrr{}] H %

141qu Rx

L

ADC HW connection

241 MikroElektronika

mikoBasic PRO for dsPIC30/33 and PIC24

CAN Library
mikroBasic PRO for dsPIC30/33 and PIC24 provides a library (driver) for working with the dsPIC30F CAN module.

The CAN is a very robust protocol that has error detection and signalization, self-checking and fault confinement.
Faulty CAN data and remote frames are re-transmitted automatically, similar to the Ethernet.

Data transfer rates depend on distance. For example, 1 Mbit/s can be achieved at network lengths below 40m while
250 Kbit/s can be achieved at network lengths below 250m. The greater distance the lower maximum bitrate that can
be achieved. The lowest bitrate defined by the standard is 200Kbit/s. Cables used are shielded twisted pairs.

CAN supports two message formats:

- Standard format, with 11 identifier bits, and
- Extended format, with 29 identifier bits

Important:

- Consult the CAN standard about CAN bus termination resistance.

- CAN library routines require you to specify the module you want to use. To use the desired CAN module,
simply change the letter x in the routine prototype for a number from 1 to 2.

- Number of CAN modules per MCU differs from chip to chip. Please, read the appropriate datasheet before
utilizing this library.

Library Routines

- CANxSetOperationMode
- CANxGetOperationMode
- CANXxInitialize

- CANxSetBaudRate

- CANxSetMask

- CANxSetFilter

- CANxRead

- CANxWrite

MikroElektronika 248

mikroBasic PRO for dsPIC30/33 and PIC24

CANxSetOperationMode

Prototype sub procedure CANxSetOperationMode (dim mode, WAIT as word)

Description | Sets the CAN module to requested mode.

Parameters | - mode: CAN module operation mode. Valid values: CaN 0P MODE constants. See CAN_OP_MODE
constants.
- wATT: CAN mode switching verification request. If WATT == 0, the call is non-blocking. The
function does not verify if the CAN module is switched to requested mode or not. Caller must use
CANxGetOperationMode to verify correct operation mode before performing mode specific operation.
IfwatT = 0, the call is blocking — the function won'’t “return” until the requested mode is set.

Returns Nothing.

Requires MCU with the CAN module.
MCU must be connected to the CAN transceiver (MCP2551 or similar) which is connected to the CAN
bus.

Example ' set the CANI module into configuration mode (wait inside CANI1SetOperationMode
until this mode is set)
CAN1SetOperationMode (CAN MODE CONFIG, OxFF)

Notes - CAN library routine require you to specify the module you want to use. To use the desired CAN
module, simply change the letter x in the routine prototype for a number from 1 to 2.
- Number of CAN modules per MCU differs from chip to chip. Please, read the appropriate datasheet
before utilizing this library.

CANxGetOperationMode

Prototype sub function CANxGetOperationMode () as word

Description | The function returns current operation mode of the CAN module. See CAN_OP_MODE constants or
device datasheet for operation mode codes.

Parameters | None.

Returns Current operation mode.

Requires MCU with the CAN module.
MCU must be connected to the CAN transceiver (MCP2551 or similar) which is connected to the CAN
bus.

Example ' check whether the CANl module is in Normal mode and if it 1is then do
something.
if (CANlGetOperationMode () = CAN MODE NORMAL) then
end if

Notes - CAN library routine require you to specify the module you want to use. To use the desired CAN
module, simply change the letter x in the routine prototype for a number from 1 to 2.
- Number of CAN modules per MCU differs from chip to chip. Please, read the appropriate datasheet
before utilizing this library.

249

mikoBasic PRO for dsPIC30/33 and PIC24

CANXxlInitialize

Prototype

sub procedure CANxInitialize(dim SJW, BRP, PHSEGl, PHSEG2, PROPSEG, CAN
CONFIG FLAGS as word)

Description

Initializes the CAN module.
The internal dsPIC30F CAN module is set to:

- Disable CAN capture

- Continue CAN operation in Idle mode

- Do not abort pending transmissions

- Fcan clock : 4*Tcy (Fosc)

- Baud rate is set according to given parameters

- CAN mode is set to Normal

- Filter and mask registers IDs are set to zero

- Filter and mask message frame type is set according to CAN CONFIG FLAGS value

SAM, SEG2PHTS, WAKFIL and DBEN bits are set according to CAN CONFIG FLAGS value.

Parameters | - sJi as defined in MCU’s datasheet (CAN Module)
- BRP as defined in MCU'’s datasheet (CAN Module)
- PSEGI as defined in MCU’s datasheet (CAN Module)
- PISEG2 as defined in MCU’s datasheet (CAN Module)
- PROPSEG as defined in MCU'’s datasheet (CAN Module)
- CAN CONFIG FLAGS is formed from predefined constants. See CAN_CONFIG_FLAGS constants.
Returns Nothing.
Requires MCU with the CAN module.
MCU must be connected to the CAN transceiver (MCP2551 or similar) which is connected to the CAN
bus.
Example ‘'initialize the CANI module with appropriate baud rate and message acceptance
flags along with the sampling rules
dim can config flags as word
can_config flags = CAN CONFIG SAMPLE THRICE and ' Form value to be used
_CAN CONFIG PHSEG2 PRG ON and ' with CANIInitialize
_CAN CONFIG STD MSG and
_CAN CONFIG DBL BUFFER ON and
_CAN CONFIG MATCH MSG TYPE and
_CAN CONFIG LINE FILTER OFF
CANlInitialize(1,3,3,3,1,can config flags) ‘"'initialize the CAN1 module
Notes - CAN mode NORMAL will be set on exit.

- CAN library routine require you to specify the module you want to use. To use the desired CAN
module, simply change the letter x in the routine prototype for a number from 1 to 2.

- Number of CAN modules per MCU differs from chip to chip. Please, read the appropriate datasheet
before utilizing this library.

MikroElektronika 250

mikroBasic PRO for dsPIC30/33 and PIC24

CANxSetBaudRate

Prototype

sub procedure CANxSetBaudRate (dim SJW, BRP, PHSEGl, PHSEG2, PROPSEG, CAN
CONFIG_FLAGS as word)

Description

Sets CAN baud rate. Due to complexity of the CAN protocol, you can not simply force a bps value.
Instead, use this function when CAN is in Config mode. Refer to datasheet for details.

SAM, SEG2PHTS and WAKEIL bits are set according to CAN CONFIG FLAGS value. Refer to
datasheet for details.

Parameters | - sJil as defined in MCU’s datasheet (CAN Module)
- BRP as defined in MCU’s datasheet (CAN Module)
- PHSEG1 as defined in MCU’s datasheet (CAN Module)
- PHSEG2 as defined in MCU’s datasheet (CAN Module)
- PROPSEG as defined in MCU’s datasheet (CAN Module)
- CAN CONFIG FLAGS is formed from predefined constants. See CAN_CONFIG_FLAGS constants.
Returns Nothing.
Requires MCU with the CAN module.
MCU must be connected to the CAN transceiver (MCP2551 or similar) which is connected to the CAN
bus.
CAN must be in Config mode, otherwise the function will be ignored. See CANxSetOperationMode.
Example ' set required baud rate and sampling rules
dim can config flags as word
CANlSetOperationMode (_CAN MODE CONFIG, 0xFF) ' set CONFIGURATION mode (CANI
module must be in config mode for baud rate settings)
can_config flags = CAN CONFIG SAMPLE THRICE and ' Form value to be used
_CAN CONFIG PHSEG2 PRG ON and ' with CANIInitialize
_CAN_CONFIG STD MSG and
_CAN CONFIG DBL BUFFER_ON and
_CAN CONFIG MATCH MSG_TYPE and
_CAN CONFIG LINE FILTER OFF
CANlSetBaudRate(1,3,3,3,1,can_config flags) ' set the CANI module baud rate
Notes - CAN library routine require you to specify the module you want to use. To use the desired CAN

module, simply change the letter x in the routine prototype for a number from 1 to 2.
- Number of CAN modules per MCU differs from chip to chip. Please, read the appropriate datasheet
before utilizing this library.

251

mikoBasic PRO for dsPIC30/33 and PIC24

CANxSetMask

Prototype

sub procedure CANxSetMask (dim CAN MASK as word, dim val as longint, dim
CAN CONFIG FLAGS as word)

Description

Function sets mask for advanced filtering of messages. Given value is bit adjusted to appropriate
buffer mask registers.

Parameters

- CAN MASK: CAN module mask number. Valid values: C2AN MASK constants. See CAN_MASK
constants.

- val: mask register value. This value is bit-adjusted to appropriate buffer mask registers

- CAN CONFIG FLAGS: selects type of message to filter. Valid values:

- CAN CONFIG ALL VALID MSG,

- _CAN CONFIG MATCH MSG TYPE & CAN CONFIG STD MSG,

- CAN CONFIG MATCH MSG TYPE & CAN CONFIG XTD MSG.

See CAN_CONFIG_FLAGS constants.

Returns

Nothing.

Requires

MCU with the CAN module.

MCU must be connected to the CAN transceiver (MCP2551 or similar) which is connected to the CAN
bus.

CAN must be in Config mode, otherwise the function will be ignored. See CANxSetOperationMode.

Example

' set appropriate filter mask and message type value
CANlSetOperationMode (_ CAN MODE CONFIG, OxFF) ' set CONFIGURATION mode (CANI
module must be in config mode for mask settings)

‘"' Set all Bl mask bits to 1 (all filtered bits are relevant)

' Note that -1 is just a cheaper way to write OxFFFFFFFF.

' Complement will do the trick and fill it up with ones.
CAN1SetMask(CAN MASK Bl, -1, CAN CONFIG MATCH MSG TYPE and _CAN CONFIG
XTD MSG)

Notes

- CAN library routine require you to specify the module you want to use. To use the desired CAN
module, simply change the letter x in the routine prototype for a number from 1 to 2.

- Number of CAN modules per MCU differs from chip to chip. Please, read the appropriate datasheet
before utilizing this library.

MikroElektronika 252

mikroBasic PRO for dsPIC30/33 and PIC24

CANxSetFilter

Prototype sub procedure CANxSetFilter (dim CAN FILTER as word, dim val as longint, dim
CAN CONFIG FLAGS as word)
Description | Function sets message filter. Given va 1 ue is bit adjusted to appropriate buffer mask registers.
Parameters | - caN FILTER: CAN module filter number. Valid values: cAN FILTER constants. See CAN_FILTER
constants.
- va l: filter register value. This value is bit-adjusted to appropriate filter registers
- CAN CONFIG FLAGS: selects type of message to filter. Valid values: CAN CONFIG STD MSGand
_CAN CONFIG XTD MSG. See CAN_CONFIG_FLAGS constants.
Returns Nothing.
Requires MCU with the CAN module.
MCU must be connected to the CAN transceiver (MCP2551 or similar) which is connected to the CAN
bus.
CAN must be in Config mode, otherwise the function will be ignored. See CANxSetOperationMode.
Example ' set appropriate filter value and message type
CAN1SetOperationMode (CAN MODE CONFIG, 0xFF) ' set CONFIGURATION mode (CANI
module must be in config mode for filter settings)
' Set id of filter Bl F1 to 3:
CAN1SetFilter (CAN FILTER Bl F1, 3, CAN CONFIG XTD MSG)
Notes - CAN library routine require you to specify the module you want to use. To use the desired CAN

module, simply change the letter x in the routine prototype for a number from 1 to 2.
- Number of CAN modules per MCU differs from chip to chip. Please, read the appropriate datasheet
before utilizing this library.

253

mikoBasic PRO for dsPIC30/33 and PIC24

CANxRead

Prototype

sub function CANxRead(dim byref id as longint, dim byref data as byte[l],
dim datalLen, CAN RX MSG FLAGS as word) as word

Description

If at least one full Receive Buffer is found, it will be processed in the following way:

- Message ID is retrieved and stored to location pointed by id pointer

- Message data is retrieved and stored to array pointed by data pointer

- Message length is retrieved and stored to location pointed by datalen pointer

- Message flags are retrieved and stored to location pointed by CAN Rx MSG FLAGS pointer

Parameters

- id: message identifier address

- data: an array of bytes up to 8 bytes in length

- dataLen: data length address

- CAN RX MSG FLAGS: message flags address. For message receive flags format refer to CaN Rrx
MSG FLAGS constants. See CAN_RX_MSG_FLAGS constants.

Returns - 0 if nothing is received
- 0xFFFE if one of the Receive Buffers is full (message received)
Requires MCU with the CAN module.
MCU must be connected to the CAN transceiver (MCP2551 or similar) which is connected to the CAN
bus.
CAN must be in Config mode, otherwise the function will be ignored. See CANxSetOperationMode.
Exmnpm ' check the CANl1 module for received messages. If any was received do
something.
dim msg rcvd, rx flags, data len as word
data as byte[8]
msg_id as longint
CANlSetOperationMode(7CAN7MODE7NORMAL,OXFF) ' set NORMAL mode (CANI module
must be in mode in which receive is possible)
rx flags = 0 ' clear message flags
if (msg rcvd = CANlRead (msg_id, data, data len, rx flags)<>0) then
end if
Notes - CAN library routine require you to specify the module you want to use. To use the desired CAN

module, simply change the letter x in the routine prototype for a number from 1 to 2.
- Number of CAN modules per MCU differs from chip to chip. Please, read the appropriate datasheet
before utilizing this library.

MikroElektronika 254

mikroBasic PRO for dsPIC30/33 and PIC24

CANxWrite

Prototype

sub function CANxWrite(dim id as longint, dim byref data as byte[l], dim
datalLen, CAN TX MSG FLAGS as word) as word

Description

If at least one empty Transmit Buffer is found, the function sends message in the queue for
transmission.

Parameters

- id: CAN message identifier. Valid values: 11 or 29 bit values, depending on message type (standard
or extended)

- data: data to be sent

- datalLen: data length. Valid values: 0. .8

-CAN RX MSG FLAGS:message flags. Valid values: CAN Tx MSG FLAGS constants. See CAN_TX_
MSG_FLAGS constants.

Returns - 0 if all Transmit Buffers are busy
- 0xFFFT if at least one Transmit Buffer is available
Requires MCU with the CAN module.
MCU must be connected to the CAN transceiver (MCP2551 or similar) which is connected to the CAN
bus.
CAN must be in Config mode, otherwise the function will be ignored. See CANxSetOperationMode.
Example ' send message extended CAN message with appropriate ID and data
dim tx flags as word
data as byte[8]
msg_id as longint
CANlSetOperationMode(7CAN7MODE7NORMAL,OXFF) ' set NORMAL mode (CANI must
be in mode in which transmission is possible)
tx flags = CAN TX PRIORITY O and
_CAN_TX XTD FRAME and
~CAN TX NO RTR FRAME ' set message flags
CANlWrite (msg_id, data, 1, tx flags)
Notes - CAN library routine require you to specify the module you want to use. To use the desired CAN

module, simply change the letter x in the routine prototype for a number from 1 to 2.
- Number of CAN modules per MCU differs from chip to chip. Please, read the appropriate datasheet
before utilizing this library.

239

mikoBasic PRO for dsPIC30/33 and PIC24

CAN Constants

There is a number of constants predefined in CAN library. To be able to use the library effectively, you need to be
familiar with these. You might want to check the example at the end of the chapter.

CAN_OP_MODE Constants

CAN OoP MODE constants define CAN operation mode. Function CANxSetOperationMode expects one of these as its
argument:

Copy Code To Clipboard

const _CAN MODE BITS as word = SEO ' Use this to access opmode bits
_CAN_MODE_NORMAL as word = 0x00
_CAN MODE DISABLE as word = 0x01
_CAN MODE_LOOP as word = 0x02
_CAN_MODE_LISTEN as word = 0x03
_CAN MODE_CONFIG as word = 0x04

_CAN MODE LISTEN ALL as word = 0x07

CAN_CONFIG_FLAGS Constants

CAN CONFIG FLAGS constants define flags related to CAN module configuration. Functions CANxInitialize and
CANxSetBaudRate expect one of these (or a bitwise combination) as their argument:

Copy Code To Clipboard

const
_CAN_CONFIG DEFAULT as word = OxFF ‘11111111

_CAN CONFIG PHSEG2 PRG BIT as word = 0x01
_CAN CONFIG PHSEG2 PRG ON as word = OxFF ' XXXXXXX1
_CAN CONFIG PHSEG2 PRG OFF as word = OxFE ' XXXXXXX0

_CAN_CONFIG_LINE FILTER BIT as word = 0x02

_CAN CONFIG LINE FILTER ON as word = OxFF ' XXXXXX1X
_CAN CONFIG LINE FILTER OFF as word = OxFD ' XXXXXX0X
_CAN_CONFIG SAMPLE BIT as word = 0x04

_CAN CONFIG SAMPLE ONCE as word = OxFF ' XXXXX1XX
_CAN CONFIG SAMPLE THRICE as word = OxFB ' XXXXX0XX
_CAN _CONFIG MSG_TYPE BIT as word = 0x08

_CAN_CONFIG_STD MSG as word = OxFF ' XXXX1XXX
_CAN_CONFIG XTD MSG as word = OxF7 ' XXXXOXXX

_CAN CONFIG DBL BUFFER BIT as word = 0x10
_CAN CONFIG DBL BUFFER ON as word = 0xFF ' XXX1XXXX
_CAN CONFIG DBL BUFFER OFF as word = 0xEF ' XXXOXXXX

MikroElektronika 256

mikroBasic PRO for dsPIC30/33 and PIC24

_CAN CONFIG MATCH TYPE BIT as word = 0x20
_CAN CONFIG ALL VALID MSG as word = OxDF ' XX0XXXXX
_CAN CONFIG MATCH MSG TYPE as word = OxFF ' XXIXXXXX

You may use bitwise and to form config byte out of these values. For example:

Copy Code To Clipboard

init = CAN CONFIG SAMPLE THRICE and
_CAN CONFIG PHSEG2 PRG ON and
_CAN CONFIG STD MSG and
_CAN_CONFIG DBL BUFFER ON and
_CAN _CONFIG VALID XTD MSG and

_CAN CONFIG LINE FILTER OFF

CANlInitialize(1, 1, 3, 3, 1, init) ‘'"initialize CAN

CAN_TX_MSG_FLAGS Constants
CAN TX MSG FLAGS are flags related to transmission of a CAN message:

Copy Code To Clipboard

const
_CAN TX PRIORITY BITS as word = 0x03
_CAN TX PRIORITY O as word = OxFC VOXXXXXX00
_CAN TX PRIORITY 1 as word = OxFD VOXXXXXX0L
_CAN TX PRIORITY 2 as word = OXFE VOXXXXXX10
_CAN TX PRIORITY 3 as word = OxFF VOXXXXXX11
_CAN TX FRAME BIT as word = 0x08
~CAN TX STD FRAME as word = OxFF VXXX XX1XX
~_CAN TX XTD FRAME as word = OxF7 VXXX XXOXX
_CAN TX RTR BIT as word = 0x40
_CAN TX NO RTR FRAME as word = OxFF VXTI XXXXKXX
_CAN TX RTR FRAME as word = OxBF vV XOXXXXKXX

You may use bitwise and to adjust the appropriate flags. For example:
Copy Code To Clipboard

' form value to be used with CANSendMessage:

send config = CAN TX PRIORITY 0 and
_CAN TX XTD FRAME and
_CAN_TX NO RTR_FRAME

CANSendMessage (id, data, 1, send config)

251 MikroElektronika

mikoBasic PRO for dsPIC30/33 and PIC24

CAN_RX_MSG_FLAGS Constants

CAN RX MSG FLAGS are flags related to reception of CAN message. If a particular bit is set; corresponding meaning
is TRUE or else it will be FALSE.

Copy Code To Clipboard

const
_CAN RX FILTER BITS as word = 0x0007 ‘" Use this to access filter bits
_CAN RX FILTER 1 as word = 0x00
_CAN RX FILTER 2 as word = 0x01
_CAN RX FILTER 3 as word = 0x02
_CAN RX FILTER 4 as word = 0x03
_CAN RX FILTER 5 as word = 0x04
_CAN RX FILTER 6 as word = 0x05
_CAN_RX OVERFLOW as word = 0x08 ' Set if Overflowed else cleared
_CAN RX INVALID MSG as word = 0x10 ‘'"Set if invalid else cleared
~CAN RX XTD FRAME as word = 0x20 ' Set if XTD message else cleared
~CAN RX RTR FRAME as word = 0x40 ' Set if RTR message else cleared
_CAN RX DBL BUFFERED as word = 0x80' Set if this message was hardware double-
buffered

You may use bitwise and to adjust the appropriate flags. For example:

Copy Code To Clipboard

if (MsgFlag and CAN RX OVERFLOW) <> 0 then
:‘éeceiver overflow has occurred.

' We have lost our previous message.
end if

CAN_MASK Constants

CAN MASK constants define mask codes. Function CANxSetMask expects one of these as its argument:
Copy Code To Clipboard

const

_CAN MASK Bl as word =
_CAN MASK B2 as word

]

MikroElektronika 258

mikroBasic PRO for dsPIC30/33 and PIC24

CAN_FILTER Constants
CAN FILTER constants define filter codes. Function CANxSetFilter expects one of these as its argument:
Copy Code To Clipboard

const
_CAN FILTER Bl Fl as word =
_CAN FILTER Bl F2 as word =
_CAN FILTER B2 Fl as word =
_CAN FILTER B2 F2 as word =
_CAN FILTER B2 F3 as word =
_CAN FILTER B2 F4 as word =

g W N O

Library Example

The example demonstrates CAN protocol. The 1st node initiates the communication with the 2nd node by sending
some data to its address. The 2nd node responds by sending back the data incremented by 1. The 1st node then does
the same and sends incremented data back to the 2nd node, etc.

Code for the first CAN node:

Copy Code To Clipboard

program CAN 1st

dim Can Init Flags, Can Send Flags, Can Rcv Flags, Rx Data Len as word
RxTx Data as byte[8]

Rx ID as longint
Msg Rcvd as word

const ID 1st as longint = 12111
const ID 2nd as longint = 3 ' node IDs
main:
ADPCFG = OxFFFF
PORTB = 0
TRISB = 0
Can Init Flags =0
Can_Send Flags =0
Can _Rcv_Flags =0
Can_Send Flags = CAN TX PRIORITY 0 and ' form value to be used
_CAN TX XTD FRAME and ' with CANSendMessage
_CAN TX NO RTR FRAME
Can Init Flags = CAN CONFIG SAMPLE THRICE and ' form value to be used
_CAN CONFIG PHSEG2 PRG ON and ' with CANInitialize

_CAN_CONFIG_XTD MSG and

_CAN CONFIG DBL BUFFER ON and
_CAN_CONFIG_MATCH MSG_TYPE and
_CAN CONFIG _LINE FILTER OFF

299 MikroElektronika

mikoBasic PRO for dsPIC30/33 and PIC24

RxTx Data[0] = 9
CANlInitialize(1,3,3,3,1,Can Init Flags) ‘"'initialize CAN
CAN1lSetOperationMode (CAN MODE CONFIG, O0xFF) ' set CONFIGURATION mode

CAN1SetMask(CAN MASK Bl, -1, CAN CONFIG MATCH MSG TYPE and CAN CONFIG XTD MSG)
' set all maskl bits to ones

CAN1SetMask(CAN MASK B2, -1, CAN CONFIG MATCH MSG TYPE and CAN CONFIG XTD MSG)
' set all mask2 bits to ones

CAN1SetFilter (CAN FILTER B2 F3,ID 2nd, CAN CONFIG XTD MSG) ' set id of filter B2 F3
to 2nd node ID

CANl1SetOperationMode (CAN MODE NORMAL, OxFF) ' set NORMAL mode

CANlWrite (ID 1st, RxTx Data, 1, Can Send Flags)

while TRUE
Msg Rcvd = CANlRead(Rx ID , RxTx Data , Rx Data Len, Can Rcv Flags)
if ((Rx ID = ID 2nd) and (Msg Rcvd <> 0)) <> 0 then

PORTB = RxTx Datal0] ' output data at PORTB
RxTx Data[0] = RxTx Data[0] + 1
Delay ms (10)
CANlWrite (ID 1st, RxTx Data, 1, Can Send Flags) ' send incremented data back
end if
wend
end.

Code for the second CAN node:

Copy Code To Clipboard

program Can 2nd

dim Can Init Flags, Can Send Flags, Can Rcv Flags, Rx Data Len as word
RxTx Data as byte([8]

Rx ID as longint
Msg Rcvd as word

const ID 1st as longint = 12111
const ID 2nd as longint = 3 ' node IDs
main:

ADPCFG = OxFFFF

PORTB = 0

TRISB = 0

Can Init Flags = 0
Can_Send Flags
Can Rcv Flags = 0

Il
o

MikroElektronika 260

mikroBasic PRO for dsPIC30/33 and PIC24

Can Send Flags = CAN TX PRIORITY 0 and !
_CAN TX XTD FRAME and '
_CAN TX NO RTR FRAME

Can Init Flags = CAN CONFIG SAMPLE THRICE and !
_CAN CONFIG PHSEG2 PRG ON and '
_CAN CONFIG XTD MSG and
_CAN CONFIG DBL BUFFER ON and
_CAN CONFIG MATCH MSG TYPE and
_CAN CONFIG LINE FILTER OFF

CANlInitialize(1,3,3,3,1,Can Init Flags)
CANlSetOperationMode (_ CAN MODE CONFIG, OxFF)

form
with

form
with

value to be used
CANSendMessage

value to be used
CANInitialize

‘"initialize CAN
' set CONFIGURATION mode

CAN1SetMask (CAN MASK Bl, -1, CAN CONFIG MATCH MSG TYPE and CAN CONFIG XTD MSG)

' set all maskl bits to ones

CAN1SetMask (CAN MASK B2, -1, CAN CONFIG MATCH MSG TYPE and CAN CONFIG XTD MSG)

' set all mask2 bits to ones

CAN1SetFilter (CAN FILTER Bl F1,ID 1lst, CAN CONFIG XTD MSG) ' set id of filter Bl FI

to 1st node ID

CANlSetOperationMode (_ CAN MODE NORMAL, OxFF)

while TRUE

Msg Rcvd = CANIlRead(Rx ID , RxTx Data ,
if ((Rx ID = ID 1st) and (Msg Rcvd <> 0))

PORTB = RxTx Datal[0]

RxTx Data[0] = RxTx Data[0] + 1

CANlWrite (ID 2nd, RxTx Data,
end if
wend
end.

1,

Can_Send Flags)

Rx Data Len,
<> 0 then

' set NORMAL mode

Can_Rcv_Flags)

output data at portB

send incremented data back

261

mikoBasic PRO for dsPIC30/33 and PIC24

HW Connection

* CAN RX of MCU

—* CAN TX of MCU

1] B
—| Tx-can rs [—
|”—2[GND CANH | F———
3]
vce vec canL [—
—‘[RXD ref]5_
MCP2551

Shielded -~ L{
twisted pair |
Example of interfacing CAN transceiver with MCU and CAN bus

MikroElektronika 262

mikroBasic PRO for dsPIC30/33 and PIC24

CANSPI Library

The SPI module is available with a number of the dsPIC30/33 and PIC24 MCUs. The mikroBasic PRO for dsPIC30/33
and PIC24 provides a library (driver) for working with mikroElektronika’s CANSPI Add-on boards (with MCP2515 or
MCP2510) via SPI interface.

The CAN is a very robust protocol that has error detection and signalization, self-checking and fault confinement.
Faulty CAN data and remote frames are re-transmitted automatically, similar to the Ethernet.

In the mikroBasic PRO for dsPIC30/33 and PIC24, each routine of the CAN library has its own CANSPI counterpart
with identical syntax. For more information on Controller Area Network, consult the CAN Library. Note that an effective
communication speed depends on SPI and certainly is slower than “real” CAN.

CAN supports two message formats:

- Standard format, with 11 identifier bits and
- Extended format, with 29 identifier bits

Important:

- Consult the CAN standard about CAN bus termination resistance.

- An effective CANSPI communication speed depends on SPI and certainly is slower than “real” CAN.

- The library uses the SPI module for communication. User must initialize appropriate SPI module before using the
CANSPI Library.

- For MCUs with multiple SPI modules it is possible to initialize both of them and then switch by using the SPI_Set_
Active routine.

- Number of SPI modules per MCU differs from chip to chip. Please, read the appropriate datasheet before utilizing
this library.

- CANSPI module refers to mikroElektronika’s CANSPI Add-on board connected to SPI module of MCU.

Library Dependency Tree

| cANSPI —+{ sp1

| S

External dependencies of CANSPI Library

The following variables must be

defined in all projects using CANSPI | Description: Example:
Library:
dim CanSpi CS as sbit sfr . . .) . .
- anepr_tea * Chip Select line. dim CanSpi CS as sbit at LATFO bit
external - -
di CanSpi Rst as bit £
L ansp “ sht S5 | Reset line. dim CanSpi Rst as sbit at LATF1 bit
external
dim CanSpi CS Direction as dim CanSpi CS Direction as sbit at

Direction of the Chip Select pin.

sbit sfr external TRISFO bit

dim CanSpi Rst Direction as Direction of the Reset pin dim CanSpi Rst Direction as sbit at
sbit sfr external pin. TRISF1 bit

263 MikroElektronika

mikoBasic PRO for dsPIC30/33 and PIC24

Library Routines

- CANSPISetOperationMode
- CANSPIGetOperationMode
- CANSPIInit

- CANSPISetBaudRate

- CANSPISetMask

- CANSPISetFilter

- CANSPIRead

- CANSPIWrite

CANSPISetOperationMode

Prototype sub procedure CANSPISetOperationMode (dim mode as byte, dim WAIT as byte)

Description | Sets the CANSPI module to requested mode.

Parameters | mode: CANSPI module operation mode. Valid values: CANSPT OP MODE constants. See CANSPI_
OP_MODE constants.
WaATT: CANSPI mode switching verification request. If wATT == 0, the call is non-blocking. The
function does not verify if the CANSPI module is switched to requested mode or not. Caller must
use CANSPIGetOperationMode to verify correct operation mode before performing mode specific
operation. If wATT != 0, the call is blocking — the function won’t “return” until the requested mode is
set.

Returns Nothing.

Requires The CANSPI routines are supported only by MCUs with the SPI module.
MCU has to be properly connected to mikroElektronika’s CANSPI Extra Board or similar hardware.
See connection example at the bottom of this page.

Example ! set the CANSPI module into configuration mode (wait inside
CANSPISetOperationMode until this mode is set)
CANSPISetOperationMode (_ CANSPI MODE CONFIG, OxFF)

Notes None.

MikroElektronika 264

mikroBasic PRO for dsPIC30/33 and PIC24

CANSPIGetOperationMode

Prototype

sub function CANSPIGetOperationMode () as byte

Description

The function returns current operation mode of the CANSPI module. Check CANSPI_OP_MODE
constants or device datasheet for operation mode codes.

Parameters

None.

Returns

Current operation mode.

Requires

The CANSPI routines are supported only by MCUs with the SPI module.

MCU has to be properly connected to mikroElektronika’s CANSPI Extra Board or similar hardware.
See connection example at the bottom of this page.

Example

' check whether the CANSPI module 1is 1in Normal mode and 1if it 1is do

something.
if (CANSPIGetOperationMode ()

= CANSPI MODE NORMAL) then

end if

Notes

None.

CANSPIInit

Prototype

sub procedure CANSPIInit (dim SJW,
CONFIG FLAGS as char)

BRP, PHSEGl, PHSEG2, PROPSEG, CANSPI

Description

Initializes the CANSPI module.
Stand-Alone CAN controller in the CANSPI module is set to:

- Disable CAN capture

- Continue CAN operation in Idle mode

- Do not abort pending transmissions

- Fcan clock: 4*Tey (Fosc)

- Baud rate is set according to given parameters

- CAN mode: Normal

- Filter and mask registers |IDs are set to zero

- Filter and mask message frame type is set according to CANSPI_CONFIG_FLAGS value

SAM, SEG2PHTS, WAKFIL and DBEN bits are set according to CANSPI_CONFIG_FLAGS value.

Parameters

- sJw as defined in MCU'’s datasheet (CAN Module)

- BRP as defined in MCU’s datasheet (CAN Module)

- PHSEG1 as defined in MCU’s datasheet (CAN Module)

- PHSEG2 as defined in MCU’s datasheet (CAN Module)

- PROPSEG as defined in MCU’s datasheet (CAN Module)

- CANSPI CONFIG FLAGS is formed from predefined constants. See CANSPI_CONFIG_FLAGS
constants.

Returns

Nothing.

263

mikoBasic PRO for dsPIC30/33 and PIC24

Requires Global variables:
- CanSpi Cs: Chip Select line
- CanSpi Rst: Reset line
- CanSpi CS Direction: Direction of the Chip Select pin
- CanSpi Rst Direction: Direction of the Reset pin
must be defined before using this function.
The CANSPI routines are supported only by MCUs with the SPI module.
The SPI module needs to be initialized. See the SPIx_Init and SPIx_Init_Advanced routines.
MCU has to be properly connected to mikroElektronika’s CANSPI Extra Board or similar hardware.
See connection example at the bottom of this page.
Exmnpm ' CANSPI module connections
dim CanSpi CS as sbit at LATFO bit
CanSpi CS Direction as sbit at TRISFO bit
CanSpi Rst as sbit at LATF12 bit
CanSpi Rst Direction as sbit at TRISF1 bit
' End CANSPI module connections
dim CANSPI Init Flags as word
CANSPI Init Flags = CANSPI CONFIG SAMPLE THRICE and
_CANSPI CONFIG PHSEG2 PRG ON and
_CANSPI CONFIG_STD MSG and
_CANSPI CONFIG DBL BUFFER ON and
_CANSPI CONFIG VALID XTD MSG and
_CANSPI CONFIG LINE FILTER OFF
SPI1 Init() ‘"'initialize SPI1 module
CANSPI(1,3,3,3,1,CANSPI Init Flags) ‘"'initialize CANSPI
Notes - CANSPI mode NORMAL will be set on exit.

MikroElektronika 266

mikroBasic PRO for dsPIC30/33 and PIC24

CANSPISetBaudRate

Prototype sub procedure CANSPISetBaudRate (dim SJW, BRP, PHSEGl, PHSEG2, PROPSEG,
CANSPI CONFIG FLAGS as byte)
Returns Nothing.
Description | Sets the CANSPI module baud rate. Due to complexity of the CAN protocol, you can not simply force
a bps value. Instead, use this function when the CANSPI module is in Config mode.
SAM, SEG2PHTS and WAKFTIL bits are set according to CANSPI_CONFIG_FLAGS value. Refer to
datasheet for details.
Parameters | - sJil as defined in MCU’s datasheet (CAN Module)
- BRP as defined in MCU’s datasheet (CAN Module)
- PHSEG1 as defined in MCU’s datasheet (CAN Module)
- PHSEG2 as defined in MCU’s datasheet (CAN Module)
- PROPSEG as defined in MCU’s datasheet (CAN Module)
- CANSPI CONFIG FLAGS is formed from predefined constants. See CANSPI_CONFIG_FLAGS
constants.
Returns Nothing.
Requires The CANSPI module must be in Config mode, otherwise the function will be ignored. See
CANSPISetOperationMode.
The CANSPI routines are supported only by MCUs with the SPI module.
MCU has to be properly connected to mikroElektronika’s CANSPI Extra Board or similar hardware.
See connection example at the bottom of this page.
Example ' set required baud rate and sampling rules
dim CANSPI CONFIG FLAGS as byte
CANSPISetOperationMode (_CANSPI MODE CONFIG,O0xFF) ' set CONFIGURATION mode
(CANSPI1 module mast be in config mode for baud rate settings)
CANSPI CONFIG FLAGS = CANSPI CONFIG SAMPLE THRICE and
_CANSPI CONFIG_PHSEG2 PRG ON and
_CANSPI CONFIG_STD MSG and
_CANSPI CONFIG DBL BUFFER ON and
_CANSPI CONFIG VALID XTD MSG and
_CANSPI CONFIG LINE FILTER OFF
CANSPISetBaudRate(l, 1, 3, 3, 1, CANSPI CONFIG FLAGS)
Notes None.

261

mikoBasic PRO for dsPIC30/33 and PIC24

CANSPISetMask

Prototype

sub procedure CANSPISetMask (dim CANSPI MASK as byte, dim val as longint, dim
CANSPI CONFIG FLAGS as byte)

Description

Configures mask for advanced filtering of messages. The parameter value is bit-adjusted to the
appropriate mask registers.

Parameters

- caNsPI MASK: CAN module mask number. Valid values: CANSPT MASK constants. See CANSPI_
MASK constants.
- val: mask register value. This value is bit-adjusted to appropriate buffer mask registers
- CANSPI CONFIG FLAGS: selects type of message to filter. Valid values:
- CANSPI CONFIG ALL VALID MSG,
- CANSPI CONFIG MATCH MSG TYPE & CANSPI CONFIG STD MSG,
- CANSPI CONFIG MATCH MSG TYPE & CANSPI CONFIG XTD MSG.
See CANSPI_CONFIG_FLAGS constants.

Returns

Nothing.

Requires

The CANSPI module must be in Config mode, otherwise the function will be ignored. See
CANSPISetOperationMode.

The CANSPI routines are supported only by MCUs with the SPI module.

MCU has to be properly connected to mikroElektronika’s CANSPI Extra Board or similar hardware.
See connection example at the bottom of this page.

Example

\

set the appropriate filter mask and message type value
CANSPISetOperationMode(7CANSPI7MODE7CONFIG,OXFF) ‘' set CONFIGURATION
mode (CANSPI1 module must be in config mode for mask settings)

‘" Set all Bl mask bits to 1 (all filtered bits are relevant):

' Note that -1 is just a cheaper way to write OXFFFFFFFF.

' Complement will do the trick and fill it up with ones.
CANSPISetMask(CANSPI MASK B1, -1, CANSPI CONFIG MATCH MSG TYPE and
CANSPI CONFIG_XTD MSG)

Notes

None.

MikroElektronika 268

mikroBasic PRO for dsPIC30/33 and PIC24

CANSPISetFilter

Prototype

sub procedure CANSPISetFilter (dim CAN FILTER as byte, dim val as longint,
dim CANSPI CONFIG FLAGS as byte)

Description

Configures message filter. The parameter va 1 ue is bit-adjusted to the appropriate filter registers.

Parameters

- CANsPI FILTER: CAN module filter number. Valid values: CANSPI FILTER constants. See
CANSPI_FILTER constants.

- val: filter register value. This value is bit-adjusted to appropriate filter registers

- CANSPI CONFIG FLAGS: selects type of message to filter. Valid values: CANSPI CONFIG STD
MSGand CANSPI CONFIG XTD MsG. See CANSPI_CONFIG_FLAGS constants.

Returns

Nothing.

Requires

The CANSPI module must be in Config mode, otherwise the function will be ignored. See
CANSPISetOperationMode.

The CANSPI routines are supported only by MCUs with the SPI module.

MCU has to be properly connected to mikroElektronika’s CANSPI Extra Board or similar hardware.
See connection example at the bottom of this page.

Example

' set the appropriate filter value and message type
CANSPIlSetOperationMode(_CANSPI_MODE_CONFIG,OXFF) ' set CONFIGURATION mode
(CANSPI1 module must be in config mode for filter settings)

' Set id of filter BI F1 to 3:
CANSPIlSetFilter(CANSPI FILTER Bl F1, 3, CANSPI CONFIG XTD MSG)

Notes

None.

269

mikoBasic PRO for dsPIC30/33 and PIC24

CANSPIRead
Prototype sub function CANSPIRead (dim byref id as longint, dim byref Data as byte[8],
dim byref DatalLen as byte, dim byref CAN RX MSG FLAGS as byte) as byte
Description | If at least one full Receive Buffer is found, it will be processed in the following way:
- Message ID is retrieved and stored to location provided by the id parameter
- Message data is retrieved and stored to a buffer provided by the data parameter
- Message length is retrieved and stored to location provided by the datal.en parameter
- Message flags are retrieved and stored to location provided by the CANSPI RX MSG FLAGS
parameter
Parameters | - i d: message identifier address
- data: an array of bytes up to 8 bytes in length
- dataLen: data length address
- CANSPI RX MSG FLAGS: message flags address. For message receive flags format refer to
CANSPI RX MSG FLAGS constants. See CANSPI_RX_MSG_FLAGS constants.
Returns - 0 if nothing is received
- 0xFEFFF if one of the Receive Buffers is full (message received)
Requires The CANSPI module must be in a mode in which receiving is possible. See
CANSPISetOperationMode.
The CANSPI routines are supported only by MCUs with the SPI module.
MCU has to be properly connected to mikroElektronika’s CANSPI Extra Board or similar hardware.
See connection example at the bottom of this page.
Example ' check the CANSPI1 module for received messages. If any was received do
something.
dim msg rcvd, rx flags, data len as byte
data as byte[8]
msg_id as longint
CANSPISetOperationMode (CANSPI MODE NORMAL, OxFF) ' set NORMAL mode (CANSPI1
module must be in mode in which receive is possible)
rx flags 0 ' clear message flags
if (msg rcvd = CANSPIRead(msg id, data, data len, rx flags)) then
end if
Notes None.

MikroElektronika 210

mikroBasic PRO for dsPIC30/33 and PIC24

CANSPIWrite

Prototype sub function CANSPIWrite(dim id as longint, dim byref Data as byte[8], dim
DataLen, CANSPI TX MSG FLAGS as byte) as byte

Description | If at least one empty Transmit Buffer is found, the function sends message in the queue for
transmission.

Parameters | - i d: CAN message identifier. Valid values: 11 or 29 bit values, depending on message type (standard
or extended)

- Data: data to be sent

- DataLen: data length. Valid values: 0..8

- CANSPI TX MSG FLAGS: message flags. Valid values: CANSPT TX MSG FLAGS constants. See
CANSPI_TX_MSG_FLAGS constants.

Returns - 0 if all Transmit Buffers are busy
- 0xFEFE if at least one Transmit Buffer is available

Requires The CANSPI module must be in mode in which transmission is possible. See
CANSPISetOperationMode.

The CANSPI routines are supported only by MCUs with the SPI module.

MCU has to be properly connected to mikroElektronika’s CANSPI Extra Board or similar hardware.
See connection example at the bottom of this page.

Example ' send message extended CAN message with the appropriate ID and data
dim tx flags as byte

data as byte[8]

msg_id as longint

CANSPISetOperationMode<7CAN7MODE7NORMAL,OXFF) ' set NORMAIL mode (CANSPII
must be in mode in which transmission 1is possible)

tx flags = CANSPI TX PRIORITY 0 and CANSPI TX XTD FRAME ' set message
flags
CANSPIWrite (msg_id, data, 2, tx flags)

Notes None.

CANSPI Constants

There is a number of constants predefined in the CANSPI library. You need to be familiar with them in order to be able
to use the library effectively. Check the example at the end of the chapter.

CANSPI_OP_MODE Constants

The canspI op MODE constants define CANSPI operation mode. Function CANSPISetOperationMode expects one
of these as it's argument:

2N MikroElektronika

mikoBasic PRO for dsPIC30/33 and PIC24

Copy Code To Clipboard

const
_CANSPI MODE BITS
_CANSPI MODE NORMAL
_CANSPI MODE SLEEP
_CANSPI MODE LOOP
_CANSPI MODE LISTEN
_CANSPI MODE CONFIG

as
as
as
as
as
as

byte
byte
byte
byte
byte
byte

CANSPI_CONFIG_FLAGS Constants

SEO

$20
$40
$60
$80

Use this to access opmode

bits

The CANSPI CONFIG FLAGS constants define flags related to the CANSPI module configuration. The functions
CANSPIInit, CANSPISetBaudRate, CANSPISetMask and CANSPISetFilter expect one of these (or a bitwise

combination) as their argument:
Copy Code To Clipboard

const

~CANSPI CONFIG DEFAULT

_CANSPI CONFIG PHSEG2 PRG BIT

_CANSPI CONFIG PHSEG2 PRG ON

_CANSPI CONFIG PHSEG2 PRG OFF

_CANSPI CONFIG LINE FILTER BIT

_CANSPI CONFIG LINE FILTER ON

_CANSPI CONFIG LINE FILTER OFF

~ CANSPI CONFIG SAMPLE BIT
_CANSPI CONFIG SAMPLE ONCE

_CANSPI CONFIG SAMPLE THRICE

_CANSPI CONFIG MSG TYPE BIT

_CANSPI CONFIG_STD MSG
_CANSPI CONFIG XTD MSG

_CANSPI CONFIG DBL BUFFER BIT

_CANSPI CONFIG DBL BUFFER ON

~CANSPI CONFIG DBL BUFFER OFF

_CANSPI_CONFIG MSG BITS
_CANSPI_CONFIG_ALL MSG

_CANSPI CONFIG VALID XTD MSG
_CANSPI CONFIG VALID STD MSG
_CANSPI CONFIG ALL VALID MSG

as

as
as
as

as
as
as

as
as
as

as
as
as

as
as
as

as
as
as
as
as

byte
byte
byte
byte

byte

byte =
byte =

byte

byte =
byte =

byte

byte =
byte =

byte

byte =
byte =

byte

byte =
byte =
byte =
byte =

SFF

$01
SFF
SFE

$02
SFF
SFD

$04
SFF
SFB

$08
SFF
SE7

$10
SFF
SEF

$60
SFF
$DF
$BF
S9F

V11111111

vVOXXXXXXX1
vOXXXXXXXO0

VOXXXXXXIX
vVOXXXXXX0OX

VOXXXXX1XX
vVOXXXXXOXX

VOXXXXIXXX
VOXXXXOXXX

vVOXXXIXXXX
vVOXXXOXXXX

VXTI 1IXXXXX
vV X10XXXXX
vV XO01XXXXX
vV XO00XXXXX

MikroElektronika

212

mikroBasic PRO for dsPIC30/33 and PIC24

You may use bitwise and to form config byte out of these values. For example:

Copy Code To Clipboard

init = CANSPI CONFIG SAMPLE THRICE and
_CANSPI CONFIG_PHSEG2 PRG ON and
_CANSPI_CONFIG_STD MSG and
_CANSPI CONFIG DBL BUFFER ON and
_CANSPI CONFIG VALID XTD MSG and

_CANSPI CONFIG LINE FILTER OFF
CANSPIInit (1, 1, 3, 3, 1, init) ' initialize CANSPI
CANSPI_TX_MSG_FLAGS Constants
CANSPI TX MSG FLAGS are flags related to transmission of a CANSPI message:

Copy Code To Clipboard

const
_CANSPI TX PRIORITY BITS as byte = 503
_CZ—\NSPI_TX_PRIORITY_O as byte = SFC VOXXXXXX00
_CANSPI_TX_PRIORITY_l as byte = S$SFD VOXXXXXX0L1
_CANSPI TX PRIORITY 2 as byte = SFE Y XXXXXX10
_CANSPI TX PRIORITY 3 as byte = S$FF Y OXXXXXX11
_CANSPI TX FRAME BIT as byte = 508
_CANSPI TX STD FRAME as byte = SFF ' XXXXX1XX
_CANSPI TX XTD FRAME as byte = SF7 VOXXXXXOXX
_CANSPI TX RTR BIT as byte = $40
_CANSPI TX NO RTR FRAME as byte = SFF VO XIXXXXXX
_CANSPI TX RTR FRAME as byte = $BF vV XOXXXXXX

You may use bitwise and to adjust the appropriate flags. For example:
Copy Code To Clipboard
' form value to be used with CANSendMessage:
send config = CANSPI TX PRIORITY O and
_CANSPI TX XTD FRAME and
_CANSPI TX NO RTR FRAME

CANSPIWrite (id, data, 1, send config)

CANSPI_RX_MSG_FLAGS Constants

CANSPI RX MSG FLAGS are flags related to reception of CANSPI message. If a particular bit is set then corresponding
meaning is TRUE or else it will be FALSE.

213 MikroElektronika

mikoBasic PRO for dsPIC30/33 and PIC24

Copy Code To Clipboard

const
_CANSPI RX FILTER BITS as byte = $07 ' Use this to access filter bits
_CANSPI RX FILTER 1 as byte = $00
_CANSPI RX FILTER 2 as byte = $01
_CANSPI RX FILTER 3 as byte = $02
_CANSPI RX FILTER 4 as byte = $03
_CANSPI RX FILTER 5 as byte = $04
_CANSPI RX FILTER 6 as byte = $05
_CANSPI RX OVERFLOW as byte = 508 ' Set if Overflowed else cleared
_CANSPI _RX INVALID MSG as byte = $10 ' Set if invalid else cleared
_CANSPI RX XTD FRAME as byte = 520 ' Set if XTD message else cleared
_CANSPI RX RTR FRAME as byte = 540 ' Set if RTR message else cleared
_CANSPI _RX DBL BUFFERED as byte = $80 ' Set if this message was hardware double-
buffered

You may use bitwise and to adjust the appropriate flags. For example:

Copy Code To Clipboard

if (MsgFlag and CANSPI RX OVERFLOW) <> 0 then
:'éeceiver overflow has occurred.

' We have lost our previous message.
end if

CANSPI_MASK Constants
The CANSPI MASK constants define mask codes. Function CANSPISetMask expects one of these as it's argument:
Copy Code To Clipboard

const
_CANSPI MASK Bl as byte = 0
_CANSPI MASK B2 as byte = 1

CANSPI_FILTER Constants
The cANSPT FILTER constants define filter codes. Functions CANSPISetFilter expects one of these as it's argument:
Copy Code To Clipboard

const
_CANSPI FILTER Bl F1l as byte =
_CANSPI FILTER Bl F2 as byte =
_CANSPI FILTER B2 Fl as byte =
_CANSPI FILTER B2 F2 as byte =
_CANSPI FILTER B2 F3 as byte =
_CANSPI FILTER B2 F4 as byte =

g w NP O

MikroElektronika 214

mikroBasic PRO for dsPIC30/33 and PIC24

Library Example

The code is a simple demonstration of CANSPI protocol. This node initiates the communication with the 2nd node by
sending some data to its address. The 2nd node responds by sending back the data incremented by 1. This (1st) node
then does the same and sends incremented data back to the 2nd node, etc.

Code for the first CANSPI node:

Copy Code To Clipboard

program Can Spi 1st

const ID 1st as longint = 12111

const ID 2nd as longint = 3

dim Can Init Flags, Can Send Flags, Can Rcv Flags as word ' can flags
Rx Data Len as word ' received data length in bytes
RxTx Data as byte[8] ' 'can rx/tx data buffer
Msg Rcvd as byte ' reception flag
Tx ID, Rx ID as longword ‘'can rx and tx ID

' CANSPI module connections

dim CanSpi CS as sbit at LATFO bit
CanSpi CS Direction as sbit at TRISFO bit
CanSpi Rst as sbit at LATF1 bit

CanSpi Rst Direction as sbit at TRISF1 bit
' End CANSPI module connections

ADPCFG = OxFFFF ' Configure AN pins as digital I/0
PORTB = 0 ' clear PORTB
TRISB = 0 ' set PORTB as output

Can Init Flags = 0

Canisend:Flags =0 ' clear flags

Can Rcv _Flags = 0 !

Can Send Flags = CANSPI TX PRIORITY 0 and ' form value to be used
_CANSPI TX XTD FRAME and ' with CANSPIWrite
_CANSPI TX NO RTR FRAME

Can Init Flags = CANSPI CONFIG SAMPLE THRICE and ' Form value to be used

_CANSPI CONFIG PHSEG2 PRG ON and ' with CANSPIInit
_CANSPI CONFIG XTD MSG and
_CANSPI_CONFIG DBL BUFFER ON and
_CANSPI_CONFIG VALID XTD MSG

‘' Initialize SPI1 module

SPI1 Init ()
CANSPIInitialize(1,3,3,3,1,Can Init Flags) ‘'initialize external CANSPI module
CANSPISetOperationMode(_CANSPI_MODE_CONFIG,OXFF) ' set CONFIGURATION mode
CANSPISetMask (CANSPI MASK Bl,-1, CANSPI CONFIG XTD MSG) ' set all maskl bits to ones
CANSPISetMask (CANSPI MASK B2,-1, CANSPI CONFIG XTD MSG) ' set all mask2 bits to ones

CANSPISetFilter (CANSPI FILTER B2 F4,ID 2nd, CANSPI CONFIG XTD MSG) ’‘set id of filter
B2 F4 to Znd node ID

215 MikroElektronika

mikoBasic PRO for dsPIC30/33 and PIC24

CANSPISetOperationMode(7CANSP17MODE7NORMAL,OXFF) ' set NORMAL mode

' Set initial data to be sent

RxTx Data[0] = 9
CANSPIWrite (ID 1st, RxTx Data, 1, Can Send Flags) ‘' send initial message
while (TRUE) ' endless loop
Msg Rcvd = CANSPIRead(Rx ID , RxTx Data , Rx Data Len, Can Rcv Flags) ' receive
message
if ((Rx _ID = ID 2nd) and Msg Rcvd) then ' 1f message received check id
PORTB = RxTx Datal[0] ‘' id correct, output data at PORTD
Inc (RxTx Datal[0]) ' increment received data
Delay ms(10)
CANSPIWrite (ID 1st, RxTx Data, 1, Can Send Flags) ' send incremented data back
end if
wend
end.

Code for the second CANSPI node:
Copy Code To Clipboard

program Can Spi 2nd

const ID Ist as longint = 12111

const ID 2nd as longint = 3

dim Can Init Flags, Can Send Flags, Can Rcv Flags as word ' can flags
Rx Data Len as word ' received data length in bytes
RxTx Data as byte[8] ‘can rx/tx data buffer
Msg Rcvd as byte ' reception flag
Tx ID, Rx ID as longword ‘'can rx and tx ID

' CANSPI module connections

dim CanSpi CS as sbit at LATFO bit
CanSpi CS Direction as sbit at TRISFO bit
CanSpi Rst as sbit at LATF1 bit

CanSpi Rst Direction as sbit at TRISF1 bit
' End CANSPI module connections

ADPCFG = OxXFFFF ' Configure AN pins as digital I/O
PORTB = 0 ' clear PORTB

TRISB = 0 ' set PORTB as output

Can Init Flags = 0 '

Can_Send Flags = 0 ' clear flags

Can Rcv _Flags = 0 '

MikroElekironika 216

mikroBasic PRO for dsPIC30/33 and PIC24

Can Send Flags = CANSPI TX PRIORITY 0 and ' form value to be used
_CANSPI TX XTD FRAME and ' with CANSPIWrite
_CANSPI TX NO RTR FRAME

Can Init Flags = CANSPI CONFIG SAMPLE THRICE and ' Form value to be used
_CANSPI CONFIG PHSEG2 PRG ON and ‘' with CANSPIInit
_CANSPI CONFIG XTD MSG and
_CANSPI CONFIG DBL BUFFER ON and
_CANSPI CONFIG VALID XTD MSG and
_CANSPI CONFIG LINE FILTER OFF

‘' Initialize SPI1 module
SPI1 Init()

CANSPIInitialize(1,3,3,3,1,Can Init Flags) ‘"initialize external CANSPI module

CANSPISetOperationMode (CANSPI MODE CONFIG, OxFF) ' set CONFIGURATION mode

CANSPISetMask (CANSPI MASK Bl,-1, CANSPI CONFIG XTD MSG) ' set all maskl bits to ones

CANSPISetMask (CANSPI MASK B2,-1, CANSPI CONFIG XTD MSG) ' set all mask2 bits to ones

CANSPISetFilter (CANSPI FILTER B2 F3,ID 1st, CANSPI CONFIG XTD MSG) ’ set id of filter
B2 F3 to 1st node ID

CANSPISetOperationMode(7CANSP17MODE7NORMAL,OXFF) ' set NORMAL mode
while (TRUE) ' endless loop
Msg Rcvd = CANSPIRead(Rx ID , RxTx Data , Rx Data Len, Can Rcv Flags) ' receive
message
if ((Rx ID = ID 1st) and Msg Rcvd) then ‘' if message received check id
PORTB = RxTx Datal[0] ' id correct, output data at PORTB
Inc (RxTx Datal0]) ' increment received data
CANSPIWrite (ID 2nd, RxTx Data, 1, Can Send Flags) ' send incremented data back
end if
wend
end.

211 MikroElektronika

mikoBasic PRO for dsPIC30/33 and PIC24

HW Connection

vCC

100K |:

| S|
1

1 — 18
X Vdd

RX RST

—{]eko &5 []

_ - 15

L {]™08 so Iy

— 4
—| ™1 =[]

| ™2 sck (]

—T[05cz INT]1
[{ | ’_|a OSC1 RKOE :Il
a ves BXIB 10 . DECLLATOR
— B MHz }
MCP2510

10R
B
T
[

5]
e s |

o rr

rﬁ

i s T I Y s | I

VCC
GND

‘

€L0vIIdsp
3

333

L' []rxcan rs [°—
IH—i[aNnmn D —

op—{|vee eanL [

L rxo wer [P

Shielded <~ |
twisted pair N

Example of interfacing CAN transceiver MCP2510 with MCU via SPI interface

MikroElektronika 218

mikroBasic PRO for dsPIC30/33 and PIC24

Compact Flash Library

The Compact Flash Library provides routines for accessing data on Compact Flash card (abbr. CF further in text). CF
cards are widely used memory elements, commonly used with digital cameras. Great capacity and excellent access
time of only a few microseconds make them very attractive for microcontroller applications.

In CF card, data is divided into sectors. One sector usually comprises 512 bytes. Routines for file handling, the c£ rFat
routines, are not performed directly but successively through 512B buffer.

Important:

- Routines for file handling can be used only with FAT16 file system.

- Library functions create and read files from the root directory only.

- Library functions populate both FAT1 and FAT2 tables when writing to files, but the file data is being read from the
FAT1 table only; i.e. there is no recovery if the FAT1 table gets corrupted.

- If MMC/SD card has Master Boot Record (MBR), the library will work with the first available primary (logical)
partition that has non-zero size. If MMC/SD card has Volume Boot Record (i.e. there is only one logical partition and
no MBRs), the library works with entire card as a single partition. For more information on MBR, physical and logical
drives, primary/secondary partitions and partition tables, please consult other resources, e.g. Wikipedia and similar.

- Before writing operation, make sure not to overwrite boot or FAT sector as it could make your card on PC or digital
camera unreadable. Drive mapping tools, such as Winhex, can be of great assistance.

Library Dependency Tree

—u-lfL Compact Flash
—PI: C_Type |

| compact Flash FAT16 |

219 MikroElektronika

mikoBasic PRO for dsPIC30/33 and PIC24

External dependencies of Compact Flash Library

The following variables must be defined

external

Direction of the Address 0 pin.

TRISBO bit

in all projects using Compact Flash | Description: Example:

Library:
di CF Data Port byt £

o —-ata_rort as byte stx Compact Flash Data Port. dim CF Data Port as byte at PORTD
external - -
dim CF RDY as sbit sfr external | Ready signalline. dim CF _RDY as sbit at RB7 bit
dim CF WE as sbit sfr external Write Enable signal line. dim CF_WE as sbit at LATB6 bit
dim CF _OE as sbit sfr external Output Enable signal line. dim CF _OE as sbit at LATB5 bit
dim CF CDl as sbit sfr external | Chip Detect signal line. dim CF _CDl as sbit at RB4 bit
dim CF CEl as sbit sfr external | Chip Enable signalline. dim CF_CEl as sbit at LATB3 bit
dim CF A2 as sbit sfr external Address pin 2. dim CF A2 as sbit at LATB2 bit
dim CF Al as sbit sfr external Address pin 1. dim CF Al as sbit at LATB1 bit
dim CF A0 as sbit sfr external Address pin 0. dim CF_AO as sbit at LATBO bit
dim CF RDY direction as sbit sfr Direction of the Ready pin dim CF RDY direction as sbit at
external ypin. TRISB7 bit

dim CF WE direction as sbit sfr dim CF WE direction as sbit at
external Direction of the Write Enable pin. TRISB6 bit

dim CF OE direction as sbit sfr . . . dim CF OE direction as sbit at
external Direction of the Output Enable pin. TRISB5 bit

dim CF CD1 direction as sbit sfr dim CF CDl1 direction as sbit at
external Direction of the Chip Detect pin. TRISB4 bit

dim CF CEl direction as sbit sfr dim CF CEl direction as sbit at
external Direction of the Chip Enable pin. TRISB3 bit

dim CF A2 direction as sbit sfr . . . dim CF A2 direction as sbit at
external Direction of the Address 2 pin. TRISB2 bit

dim CF Al direction as sbit sfr Direction of the Address 1 bin dim CF Al direction as sbit at
external pin. TRISB1 bit

dim CF AO0 direction as sbit sfr dim CF AQ direction as sbit at

280

mikroBasic PRO for dsPIC30/33 and PIC24

Library Routines

- Cf_Init

- Cf_Detect

- Cf_Enable

- Cf_Disable

- Cf_Read_lInit

- Cf_Read_Byte

- Cf_Write_Init

- Cf_Write_Byte

- Cf_Read_Sector
- Cf_Write_Sector

Routines for file handling:

- Cf_Fat_Init

- Cf_Fat_QuickFormat

- Cf_Fat_Assign

- Cf_Fat_Reset

- Cf_Fat_Read

- Cf_Fat_Rewrite

- Cf_Fat_Append

- Cf_Fat_Delete

- Cf_Fat_Write

- Cf_Fat_Set_File_Date
- Cf_Fat_Get_File_Date
- Cf_Fat_Get_File_Date_Modified
- Cf_Fat_Get_File_Size
- Cf_Fat_Get_Swap_File

The following routine is for the internal use by compiler only:

- Cf_lIssue_ID_Command

281 MikroElektronika

mikoBasic PRO for dsPIC30/33 and PIC24

Cf_Init

Prototype sub procedure Cf Init ()

Description | Initializes ports appropriately for communication with CF card.

Parameters | None.

Returns Nothing.

Requires Global variables:
- CF Data Port :Compact Flash data port
- CE_RDY : Ready signal line
- CE WE : Write enable signal line
- CF OE : Output enable signal line
- CE CD1 : Chip detect signal line
- CF CEI1 : Enable signal line
- CF A2 :Address pin 2
-CEF Al :Address pin 1
- CF A0 :Address pin 0
-CF RDY direction : Direction of the Ready pin
-CF WE direction : Direction of the Write enable pin
-CF OE direction : Direction of the Output enable pin
-CF CD1 direction : Direction of the Chip detect pin
-CF CEl direction : Direction of the Chip enable pin
-CF A2 direction : Direction of the Address 2 pin
-CF Al direction : Direction of the Address 1 pin
-CF A0 direction : Direction of the Address 0 pin
must be defined before using this function.

Example ' set compact flash pinout
dim Cf Data Port as byte at PORTD
dim CF RDY as sbit at RB7 bit
dim CF WE as sbit at LATB6 bit ' for writing to output pin always use latch
dim CF OE as sbit at LATBS5 bit ' for writing to output pin always use latch
dim CF CD1 as sbit at RB4 bit
dim CF CEl as sbit at LATB3 bit ' for writing to output pin always use latch
dim CF A2 as sbit at LATB2 bit ' for writing to output pin always use latch
dim CF Al as sbit at LATBl1 bit ' for writing to output pin always use latch
dim CF A0 as sbit at LATBO bit ' for writing to output pin always use latch
dim CF RDY direction as sbit at TRISB7 bit
dim CF WE direction as sbit at TRISB6 bit
dim CF OE direction as sbit at TRISBS5 bit
dim CF CD1 direction as sbit at TRISB4 bit
dim CF CEl direction as sbit at TRISB3 bit
dim CF A2 direction as sbit at TRISB2 bit
dim CF Al direction as sbit at TRISB1 bit
dim CF A0 direction as sbit at TRISBO bit
'‘'end of cf pinout
‘Init CF
Cf Init()

Notes None.

MikroElektronika

282

mikroBasic PRO for dsPIC30/33 and PIC24

Cf_Detect

Prototype sub function CF Detect() as word

Description | Checks for presence of CF card by reading the chip detect pin.

Parameters | None.

Returns - 1 - if CF card was detected
- 0 - otherwise

Requires The corresponding MCU ports must be appropriately initialized for CF card. See Cf_Init.

Example ‘" Wait until CF card is inserted:
while (Cf Detect() = 0)

nop
wend

Notes dsPIC30 family MCU and CF card voltage levels are different. The user must ensure that MCU'’s pin
connected to CD line can read CF card Logical One correctly.

Cf_Enable

Prototype sub procedure Cf Enable ()

Description | Enables the device. Routine needs to be called only if you have disabled the device by means of the
Cf_Disable routine. These two routines in conjunction allow you to free/occupy data line when working
with multiple devices.

Parameters | None.

Returns Nothing.

Requires The corresponding MCU ports must be appropriately initialized for CF card. See Cf_Init.

Example ' enable compact flash
Cf Enable()

Notes None.

Cf_Disable

Prototype |sub procedure Cf Disable ()

Description | Routine disables the device and frees the data lines for other devices. To enable the device again, call
Cf_Enable. These two routines in conjunction allow you to free/occupy data line when working with
multiple devices.

Parameters | None.

Returns Nothing.

Requires The corresponding MCU ports must be appropriately initialized for CF card. See Cf_Init.

Example ' disable compact flash
Cf Disable()

Notes None.

283

mikoBasic PRO for dsPIC30/33 and PIC24

Cf Read_Init
Prototype sub procedure Cf Read Init (dim address as longword, dim sectcnt as byte)
Description | Initializes CF card for reading.
Parameters | - address: the first sector to be prepared for reading operation.
- sector count: number of sectors to be prepared for reading operation.
Returns Nothing.
Requires The corresponding MCU ports must be appropriately initialized for CF card. See Cf_Init.
Example ‘'initialize compact flash for reading from sector 590
Cf Read Init (590, 1)
Notes None.

Cf Read_Byte

Prototype sub function CF Read Byte() as byte
Description | Reads one byte from Compact Flash sector buffer location currently pointed to by internal read
pointers. These pointers will be autoicremented upon reading.
Parameters | None.
Returns Returns a byte read from Compact Flash sector buffer.
Requires The corresponding MCU ports must be appropriately initialized for CF card. See Cf_Init.
CF card must be initialized for reading operation. See Cf_Read_Init.
Example ' Read a byte from compact flash:
dim data as byte
aé“cai = Cf Read Byte()
Notes Higher byte of the unsigned return value is cleared.
Cf_Write_Init
Prototype sub procedure Cf Write Init (dim address as longword, dim sectcnt as word)
Description | Initializes CF card for writing.
Parameters | - address: the first sector to be prepared for writing operation.
- sectent: number of sectors to be prepared for writing operation.
Returns Nothing.
Requires The corresponding MCU ports must be appropriately initialized for CF card. See Cf_Init.
Example '‘'initialize compact flash for writing to sector 590
Cf Write Init (590, 1)
Notes None.
MikroElektronika 284

mikroBasic PRO for dsPIC30/33 and PIC24

Cf_Write_Byte

Prototype sub procedure Cf Write Byte(dim data as byte)

Description | Writes a byte to Compact Flash sector buffer location currently pointed to by writing pointers. These
pointers will be autoicremented upon reading. When sector buffer is full, its contents will be transfered
to appropriate flash memory sector.

Parameters | - data : byte to be written.

Returns Nothing.

Requires The corresponding MCU ports must be appropriately initialized for CF card. See Cf_Init.

CF card must be initialized for writing operation. See Cf_Write_Init.

Example dim data as byte
data = OxAA
Cf Write Byte(data)

Notes None.

Cf Read_Sector

Prototype sub procedure Cf Read Sector (dim sector number as longword, dim byref buffer
as byte[512])
Description | Reads one sector (512 bytes). Read data is stored into buffer provided by the buf fer parameter.
Parameters | - sector number: sector to be read.
- buf fer: data buffer of at least 512 bytes in length.
Returns Nothing.
Requires The corresponding MCU ports must be appropriately initialized for CF card. See Cf_Init.
Example ' read sector 22
dim data as byte[512]
(ijlf;Read_Sector (22, data)
Notes None.

Cf_Write_Sector

285

Prototype sub procedure Cf Write Sector(dim sector number as longword, dim byref
buffer as byte[512])
Description | Writes 512 bytes of data provided by the buf fer parameter to one CF sector.
Parameters | - sector number: sector to be written to.
- buf fer: data buffer of 512 bytes in length.
Returns Nothing.
Requires The corresponding MCU ports must be appropriately initialized for CF card. See Cf_Init.
Example ' write to sector 22
dim data as byte[512]
Cf Write Sector (22, data)
Notes None.
MikroElektronika

mikoBasic PRO for dsPIC30/33 and PIC24

Cf_Fat_Init
Prototype sub function Cf Fat Init() as word
Description | Initializes CF card, reads CF FAT16 boot sector and extracts necessary data needed by the library.
Parameters | None.
Returns - 0 - if CF card was detected and successfully initialized
- 1 - if FAT16 boot sector was not found
- 255 - if card was not detected
Requires Nothing.
Example ‘" init the FAT library
if (Cf Fat Init() = 0) then
ena.if
Notes None.

Cf_Fat_QuickFormat

Prokﬂype sub function Cf Fat QuickFormat (dim byref cf fat label as string[ll]) as
word

Description | Formats to FAT16 and initializes CF card.

Parameters |- cf fat label:volume label (11 characters in length). If less than 11 characters are provided, the
label will be padded with spaces. If null string is passed, the volume will not be labeled.

Returns - 0 - if CF card was detected, successfully formated and initialized
- 1 - if FAT16 format was unsuccessful
- 255 - if card was not detected

Requires Nothing.

Example ' format and initialize the FAT library
if (CfiFatiQuickFormat(“mikroE") = 0) then
end if

Notes - This routine can be used instead or in conjunction with Cf_Fat_|Init routine.
- If CF card already contains a valid boot sector, it will remain unchanged (except volume label field)
and only FAT and ROQT tables will be erased. Also, the new volume label will be set.

MikroElektronika

286

mikroBasic PRO for dsPIC30/33 and PIC24

Cf_Fat_Assign

Prototype sub function Cf Fat Assign(dim byref filename as char[12], dim file cre attr
as byte) as word

Description | Assigns file for file operations (read, write, delete...). All subsequent file operations will be applied over
the assigned file.

Parameters | - filename: name of the file that should be assigned for file operations. The file name should be in
DOS 8.3 (file_name.extension) format. The file name and extension will be automatically padded with
spaces by the library if they have less than length required (i.e. “mikro.tx” -> “mikro .tx “), so the user
does not have to take care of that. The file name and extension are case insensitive. The library will
convert them to proper case automatically, so the user does not have to take care of that.

Also, in order to keep backward compatibility with the first version of this library, file names can be
entered as UPPERCASE string of 11 bytes in length with no dot character between the file name and
extension (i.e. “MIKROELETXT” -> MIKROELE.TXT). In this case the last 3 characters of the string
are considered to be file extension.
- file cre attr: file creation and attributes flags. Each bit corresponds to the appropriate file
attribute:

Bit | Mask Description

0 0x01 Read Only

1 0x02 Hidden

2 0x04 System

3 0x08 Volume Label

4 0x10 Subdirectory

5 0x20 Archive

6 0x40 Device (internal use only, never found on disk)

7 0x80 File creation flag. If the file does not exist and this flag is

set, a new file with specified name will be created.
Returns - 0 if file does not exist and no new file is created.

- 1 if file already exists or file does not exist but a new file is created.

Requires CF card and CF library must be initialized for file operations. See Cf_Fat_Init.

Example ‘' create file with archive attribut if it does not already exist
Cf Fat Assign (“MIKRO0O07.TXT”,0xAQ)

Notes Long File Names (LFN) are not supported.

281

mikoBasic PRO for dsPIC30/33 and PIC24

Cf _Fat_Reset

Prototype sub procedure Cf Fat Reset (dim byref size as longword)

Description | Opens currently assigned file for reading.

Parameters | - size: buffer to store file size to. After file has been open for reading its size is returned through this
parameter.

Returns Nothing.

Requires CF card and CF library must be initialized for file operations. See Cf_Fat_Init.
File must be previously assigned. See Cf_Fat_Assign.

Example dim size as longword
éf;Fat_Reset (size)

Notes None.

Cf Fat Read

Prototype sub procedure Cf Fat Read(dim byref bdata as byte)

Description | Reads a byte from currently assigned file opened for reading. Upon function execution file pointers will
be set to the next character in the file.

Parameters | - bdata: buffer to store read byte to. Upon this function execution read byte is returned through this
parameter.

Returns Nothing.

Requires CF card and CF library must be initialized for file operations. See Cf_Fat_Init.
File must be previously assigned. See Cf_Fat_Assign.
File must be open for reading. See Cf_Fat_Reset.

Example dim bdata as byte
éf;FatiRead (bdata)

Notes None.

MikroElektronika

288

mikroBasic PRO for dsPIC30/33 and PIC24

Cf_Fat_Rewrite

Prototype sub procedure Cf Fat Rewrite()
Description | Opens currently assigned file for writing. If the file is not empty its content will be erased.
Parameters | None.
Returns Nothing.
Requires CF card and CF library must be initialized for file operations. See Cf_Fat_Init.
The file must be previously assigned. See Cf_Fat_Assign.
Example ' open file for writing
Cf Fat Rewrite()
Notes None.

Cf_Fat_Append

Prototype sub procedure Cf Fat Append()
Description | Opens currently assigned file for appending. Upon this function execution file pointers will be positioned
after the last byte in the file, so any subsequent file writing operation will start from there.
Parameters | None.
Returns Nothing.
Requires CF card and CF library must be initialized for file operations. See Cf_Fat_Init.
File must be previously assigned. See Cf_Fat_Assign.
Example ' open file for appending
Cf Fat Append()
Notes None.

Cf_Fat_Delete

Prototype sub procedure Cf Fat Delete()

Description | Deletes currently assigned file from CF card.

Parameters | None.

Returns Nothing.

Requires CF card and CF library must be initialized for file operations. See Cf_Fat_Init.
File must be previously assigned. See Cf_Fat_Assign.

Example ' delete current file
Cf Fat Delete()

Notes None.

289

mikoBasic PRO for dsPIC30/33 and PIC24

Cf_Fat_Write

Prototype

sub procedure Cf Fat Write(dim byref fdata as byte[512], dim data len as
word)

Description | Writes requested number of bytes to currently assigned file opened for writing.
Parameters | - fdata: data to be written.

- data len: number of bytes to be written.
Returns Nothing.
Requires CF card and CF library must be initialized for file operations. See Cf_Fat_|Init.

File must be previously assigned. See Cf_Fat_Assign.

File must be open for writing. See Cf_Fat_Rewrite or Cf_Fat_Append.
Example dim file contents as array[42]

éé;Fat7Write(ﬁleicontents, 42) ' write data to the assigned file
Notes None.

Cf_Fat_Set_File_Date

Prototype

sub procedure Cf Fat Set File Date(dim year as word, dim month as byte, dim
day as byte, dim hours as byte, dim mins as byte, dim seconds as byte)

Description

Sets the date/time stamp. Any subsequent file writing operation will write this stamp to currently
assigned file’s time/date attributes.

Parameters

- year: year attribute. Valid values: 1980-2107

- month: month attribute. Valid values: 1-12

- day: day attribute. Valid values: 1-31

- hours: hours attribute. Valid values: 0-23

- mins: minutes attribute. Valid values: 0-59

- seconds: seconds attribute. Valid values: 0-59

Returns

Nothing.

Requires

CF card and CF library must be initialized for file operations. See Cf_Fat_Init.
File must be previously assigned. See Cf_Fat_Assign.

File must be open for writing. See Cf_Fat_Rewrite or Cf_Fat_Append.

Example

Cf Fat_Set File Date(2005,9,30,17,41,0)

Notes

None.

MikroElektronika 290

mikroBasic PRO for dsPIC30/33 and PIC24

Cf Fat _Get File Date

Prototype sub procedure Cf Fat Get File Date(dim byref year as word, dim byref month
as byte, dim byref day as byte, dim byref hours as byte, dim byref mins as
byte)

Description | Reads time/date attributes of currently assigned file.

Parameters | - year: buffer to store year attribute to. Upon function execution year attribute is returned through this
parameter.

- month: buffer to store month attribute to. Upon function execution month attribute is returned through
this parameter.

- day: buffer to store day attribute to. Upon function execution day attribute is returned through this
parameter.

- hours: buffer to store hours attribute to. Upon function execution hours attribute is returned through
this parameter.

- mins: buffer to store minutes attribute to. Upon function execution minutes attribute is returned
through this parameter.

Returns Nothing.

Requires CF card and CF library must be initialized for file operations. See Cf_Fat_Init.

File must be previously assigned. See Cf_Fat_Assign.

Example dim year as word
dim month, day, hours, mins as byte
Cf Fat Get File Date Modified(year, month, day, hours, mins)

Notes None.

Cf _Fat_Get_File_Date Modified

Prototype sub procedure Cf Fat Get File Date Modified (dim byref year as word, dim byref
month, day, hours, mins as byte)

Description | Retrieves the last modification date/time of the currently assigned file.

Parameters | - year: buffer to store year of modification attribute to. Upon function execution year of modification
attribute is returned through this parameter.
-month: buffer to store month of modification attribute to. Upon function execution month of modification
attribute is returned through this parameter.
- day: buffer to store day of modification attribute to. Upon function execution day of modification
attribute is returned through this parameter.
- hour s: buffer to store hours of modification attribute to. Upon function execution hours of modification
attribute is returned through this parameter.
- mins: buffer to store minutes of modification attribute to. Upon function execution minutes of
modification attribute is returned through this parameter.

Returns Nothing.

Requires CF card and CF library must be initialized for file operations. See Cf_Fat_Init.
File must be previously assigned. See Cf_Fat_Assign.

Example dim year as word
dim month, day, hours, mins as byte
Cf Fat Get File Date Modified(year, month, day, hours, mins)

Notes None.

291

mikoBasic PRO for dsPIC30/33 and PIC24

Cf _Fat_Get_File_Size

Prototype sub function Cf Fat Get File Size() as longword

Description | This function reads size of currently assigned file in bytes.

Parameters | None.

Returns Size of the currently assigned file in bytes.

Requires CF card and CF library must be initialized for file operations. See Cf_Fat_Init.
File must be previously assigned. See Cf_Fat_Assign.

Example dim my file size as longword
1;13‘/;ﬁleisize = Cf Fat Get File Size()

Notes None.

Cf _Fat_Get Swap_ File

Prototype

sub function Cf Fat Get Swap File(dim sectors cnt as longword, dim byref
filename as string[ll], dim file attr as byte) as longword

Description

This function is used to create a swap file of predefined name and size on the CF media. If a file
with specified name already exists on the media, search for consecutive sectors will ignore sectors
occupied by this file. Therefore, it is recommended to erase such file if it exists before calling this
function. If it is not erased and there is still enough space for a new swap file, this function will delete
it after allocating new memory space for a new swap file.

The purpose of the swap file is to make reading and writing to CF media as fast as possible, by using
the Cf_Read_Sector() and Cf_Write_Sector() functions directly, without potentially damaging the FAT
system. Swap file can be considered as a “window” on the media where the user can freely write/read
data. It's main purpose in the this library is to be used for fast data acquisition; when the time-critical
acquisition has finished, the data can be re-written into a “normal” file, and formatted in the most
suitable way.

Parameters

- sectors cnt: number of consecutive sectors that user wants the swap file to have.

- filename: name of the file that should be assigned for file operations. The file name should be in
DOS 8.3 (file_name.extension) format. The file name and extension will be automatically padded with
spaces by the library if they have less than length required (i.e. “mikro.tx” -> “mikro .tx “), so the user
does not have to take care of that. The file name and extension are case insensitive. The library will
convert them to proper case automatically, so the user does not have to take care of that.

Also, in order to keep backward compatibility with the first version of this library, file names can be
entered as UPPERCASE string of 11 bytes in length with no dot character between the file name and
extension (i.e. “MIKROELETXT” -> MIKROELE.TXT). In this case the last 3 characters of the string
are considered to be file extension.

- file attr: file creation and attributes flags. Each bit corresponds to the appropriate file attribute:

MikroElektronika 292

mikroBasic PRO for dsPIC30/33 and PIC24

Parameters - -
Bit | Mask Description
0 0x01 Read Only
1 0x02 Hidden
2 0x04 System
3 0x08 Volume Label
4 0x10 Subdirectory
5 0x20 Archive
6 0x40 Device (internal use only, never found on disk)
7 0x80 Not used
Returns - Number of the start sector for the newly created swap file, if there was enough free space on CF
card to create file of required size.
- 0 - otherwise.
Requires CF card and CF library must be initialized for file operations. See Cf_Fat_Init.
Example ' Try to create a swap file with archive atribute, whose size will be at
least 1000 sectors.
‘' If it succeeds, it sends the No. of start sector over UART
dim size as longword
size = Cf Fat Get Swap File (1000, “mikroE.txt”, 0x20)
if (size <> 0) then
UARTl_Write (0xAA)
UART1 Write (Lo (size))
UART1 Write (Hi(size))
UART1 Write (Higher (size))
UART1 Write (Highest (size))
UARTliY/\Irite (0xAA)
end if
Notes Long File Names (LFN) are not supported.

293

mikoBasic PRO for dsPIC30/33 and PIC24

Library Example

This project consists of several blocks that demonstrate various aspects of usage of the Cf_Fat16 library. These are:

- Creation of new file and writing down to it;
- Opening existing file and re-writing it (writing from start-of-file);

- Opening existing file and appending data to it (writing from end-of-file);
- Opening a file and reading data from it (sending it to USART terminal);

- Creating and modifying several files at once;
- Reading file contents;
- Deleting file(s);
- Creating the swap file (see Help for details);

Copy Code To Clipboard

program CF Fatl6 Test

dim

' set compact flash pinout

Cf Data Port as byte at PORTD

CF_RDY as
CF WE as
CF OE as
CF _CD1 as
CF CEl as
CF A2 as
CF Al as
CF A0 as

sbit
sbit
sbit
sbit
sbit
sbit
sbit
sbit

at
at
at
at
at
at
at
at

RB7 bit

LATB6 bit
LATB5 bit

RB4 bit

LATB3 bit
LATB2 bit
LATBl bit
LATBO bit

CF_RDY direction as

CF WE direction
CF _OE direction

CF _CD1 direction
CF CEl direction

CF A2 direction
CF_Al direction
CF A0 direction

' end of cf pinout

const LINE LEN =

dim

37

as
as
as
as
as
as
as

sbit
sbit
sbit
sbit
sbit
sbit
sbit
sbit

err txt as string[20]
file contents as string[LINE LEN]

filename as string([14]

character as byte

loopl, loop2 as byte

i, size as longint

Buffer as byte[512]

at
at
at
at
at
at
at
at

'\ for writing
'\ for writing

'\ for writing
'\ for writing
'\ for writing
'\ for writing

TRISB7 bit
TRISB6 bit
TRISBS bit
TRISB4 bit
TRISB3 bit
TRISB2 bit
TRISB1 bit
TRISBO bit

File names

to
to

to
to
to
to

output
output

output
output
output
output

pin
pin

pin
pin
pin
pin

always
always

always
always
always
always

use
use

use
use
use
use

latch
latch

latch
latch
latch
latch

294

mikroBasic PRO for dsPIC30/33 and PIC24

' UART write text and new line (carriage return + line feed)
sub procedure UART1l Write Line(dim byref uart text as string)

UART1 Write Text (uart text)
UART1 Write (13)
UART1 Write (10)

end sub

sub procedure M Create New File()
filename [7] = “A”
Cf Fat Set File Date(2005,6,21,10,35,0)
Cf Fat Assign (filename, O0xAOQ)
Cf Fat Rewrite()
for loopl=1l to 90
UART1 Write(“.”)
file contents[0] = loopl div 10 + 48
file contents[1] loopl mod 10 + 48
Cf Fat Write(file contents, LINE LEN-1)
next loopl
end sub

sub procedure M Create Multiple Files()
for loop2 = “B” to “Z2”
UART1 Write (loop2)
filename[7] = loop2
Cf Fat Set File Date(2005,6,21,10,35,0)
Cf Fat Assign (filename, O0xAO)
Cf Fat Rewrite()
for loopl = 1 to 44
file contents[0] = loopl div 10 + 48
file contents([1l] = loopl mod 10 + 48
Cf Fat Write(file contents, LINE LEN-1)
next loopl
next loop2
end sub

sub procedure M Open File Rewrite()
filename [7] = “C”
Cf Fat Assign(filename, 0)
Cf Fat Rewrite()
for loopl = 1 to 55
file contents[0] = byte(loopl div 10 + 48)
file contents[1l] = byte(loopl mod 10 + 48)
Cf Fat Write(file contents, LINE LEN-1)
next loopl
end sub

sub procedure M Open File Append ()

Creates new file and writes some data to it

' Set file date & time info
Will not find file and then create file
To clear file and start with new data
' We want 5 files on the MMC card

\

A\l

'"write data to the assigned file

Creates many new files and writes data to them

' this line can slow down the performance

' set filename

' Set file date & time info
' find existing file or create a new one

‘' To clear file and start with new data

' write data to the assigned file

Opens an existing file and rewrites it

' Set filename for single-file tests

' write data to the assigned file

Opens an existing file and appends data to it
(and alters the date/time stamp)

295

mikoBasic PRO for dsPIC30/33 and PIC24

filename [7] = “B”

Cf Fat Assign(filename, 0)

Cf Fat Set File Date (2009, 1, 23, 17, 22, 0)
Cf Fat Append

file contents = “ for mikroElektronika 2007” ' Prepare file for append

file contents([26] = 10 ‘' LF

Cf Fat Write(file contents, 27) ' Write data to assigned file
end sub

e Opens an existing file, reads data from it and puts it to USART
sub procedure M Open File Read()
filename [7] = “B”
Cf Fat Assign (filename, 0)
Cf Fat Reset (size) ' To read file, procedure returns size of file
while size > 0
Cf Fat Read(character)
UART1 Write (character) ‘" Write data to USART
Dec (size)
wend
end sub

e Deletes a file. If file doesn’t exist, it will first be created
! and then deleted.
sub procedure M Delete File()
filename [7] = “F”
Cf Fat Assign (filename, 0)
Cf Fat Delete()
end sub

Ve Tests whether file exists, and if so sends its creation date
! and file size via USART
sub procedure M Test File Exist()
dim
fsize as longint
year as word
month , day, hour , minute as byte
outstr as char[12]
filename [7] = “B” ' uncomment this line to search for file that DOES exists
V' filename[7] = “F” ' uncomment this line to search for file that DOES NOT exist
if Cf Fat Assign(filename, 0) <> 0 then
‘-—- file has been found - get its date
Cf Fat Get File Date(year,month ,day,hour ,minute)
UART1 Write Text (" created: %)
WordToStr (year, outstr)
UART1 Write Text (outstr)
ByteToStr (month , outstr)
UART1 Write Text (outstr)
WordToStr (day, outstr)

UART1 Write Text (outstr)

WordToStr (hour , outstr)
UART1 Write Text (outstr)
WordToStr (minute , outstr)

UART1 Write Text (outstr)

MikroElekironika 296

mikroBasic PRO for dsPIC30/33 and PIC24

‘-—-- file has been found - get its modified date

Cf Fat Get File Date Modified(year, month ,

UART1 Write Text (™ modified: “)
WordToStr (year, outstr)
UART1 Write Text (outstr)
ByteToStr (month , outstr)
UART1 Write Text (outstr)
WordToStr (day, outstr)
UART1 Write Text (outstr)
WordToStr (hour , outstr)
UART1 Write Text (outstr)
WordToStr (minute , outstr)
UART1 Write Text (outstr)

‘-—- get file size

fsize = Cf Fat Get File Size

LongIntToStr (fsize, outstr)

UART1 Write Line (outstr)
else

‘--- file was not found - signal it

UART1 Write (0x55)
Delay ms (1000)
UART1 Write (0x55)
end if
end sub

e Tries to create a swap file,

' sectors (see Help for details)

sub procedure M Create Swap File()
dim i as word

for i=0 to 511
Buffer[i] = 1
next i

size = Cf Fat Get Swap File (5000,

for details

if (size <> 0) then
LongIntToStr (size, err txt)
UART1 Write Line(err txt)

for i=0 to 4999
Cf Write Sector(size, Buffer)
Inc(size)
UART1 Write (“.”)

next i

end if

end sub

“mikroE.txt”,

0x20)

day, hour , minute)

whose size will be at least 100

' see help on this function

291

mikoBasic PRO for dsPIC30/33 and PIC24

—————————————— Main. Uncomment the function(s) to test the desired operation (s)

main:
err txt = “FAT16 not found”
file contents = “XX CF FAT16 library by Anton Rieckert”
filename = “MIKROOOxTXT”
#define COMPLETE EXAMPLE ' comment this line to make simpler/smaller example
ADPCFG = OxXFFFF ' disable A/D inputs

‘ Initialize UART1 module
UART1 Init (19200)
Delay ms (10)

UART1 Write Line (“dsPIC-Started”) ' dsPIC present report

‘" -——— Init the FAT library
' -—- use Cf Fat QuickFormat instead of init routine if a format is needed
if Cf Fat Init() = 0 then
Delay ms (2000) ‘"'wait for a while until the card is stabilized
' period depends on used CF card
‘-—-- Test start
UART1 Write Line(“Test Start.”)
M Create New File()
#IFDEF COMPLETE EXAMPLE
M Create Multiple Files()
M Open File Rewrite()
M Open File Append()
M Open File Read()
M Delete File()
M Test File Exist()
M Create Swap File()

#ENDIF
UART1 Write Line(“Test End.”)
else
UART1 Write Line(err txt) ' Note: Cf Fat Init tries to initialize a card more

than once.
‘" If card is not present, initialization may last
longer (depending on clock speed)
end if

end.

MikroElekironika 298

mikroBasic PRO for dsPIC30/33 and PIC24

HW Connection

/

Q

aoonnonooooonnononnng

nnnnnnm% nn? %nn
B g

s

dsPIC30F6014A

OSCILLATOR

.

vCC
h J
RD7 .
RD6
RDS -
RD4 =
RD3 = :?s:; .
RD2 [=Tl
— a5
RD1 o
RDO =T
=,
16 | *
——
81{_
?1]
12
=
RF7 =T
RF6 —=rs —|
RFS =T, ||
— 'il}s
RF4 = 2,
— 2
RF3 =)
RF2 1 26
RF1
RFO

Compact Flash
Card

—

10K
[+—+vcec

Pin diagram of CF memory card

299

mikoBasic PRO for dsPIC30/33 and PIC24

ECAN Library

mikroBasic PRO for dsPIC30/33 and PIC24 provides a library (driver) for working with the dsPIC33FJ and pic24HJ
ECAN module.

ECAN is a very robust protocol that has error detection and signalling, self—checking and fault confinement. Faulty
ECAN data and remote frames are re-transmitted automatically, similar to the Ethernet.

Data transfer rates depend on distance. For example, 1 Mbit/s can be achieved at network lengths below 40m while
250 Kbit/s can be achieved at network lengths below 250m. The greater distance the lower maximum bitrate that can
be achieved . The lowest bitrate defined by the standard is 200Kbit/s. Cables used are shielded twisted pairs.

ECAN supports two message formats:

- Standard format, with 11 identifier bits, and
- Extended format, with 29 identifier bits

ECAN message format and DMA RAM buffer definiton can be found in the ECan Defs.mbas header file located in the
ECAN project folder. Read this file carefully and make appropriate adjustments for mcu in use. Also, if a new project
is to be created this file has to be copied, adjusted and included into the project via include pragma directive with
corresponding Search Path updating.

Important:

- ECAN buffers are located in DMA RAM, so two DMA channels are used for message transfer, one for each direction
(ECAN->DMA RAM, DMA RAM->ECAN). See the ECANxDmaChannellnit routine.

- Consult CAN standard about CAN bus termination resistance.

- CAN library routines require you to specify the module you want to use. To select the desired CAN module, simply
change the letter x in the routine prototype for a number from 1 to 2.

- Number of CAN modules per MCU differs from chip to chip. Please, read the appropriate datasheet before utilizing
this library.

Library Routines

- ECANxDmaChannellnit

- ECANxSetOperationMode
- ECANxGetOperationMode
- ECANXxInitialize

- ECANxSelectTxBuffers

- ECANXxFilterDisable

- ECANXxFilterEnable

- ECANxSetBufferSize

- ECANxSetBaudRate

- ECANxSetMask

- ECANXxSetFilter

- ECANxRead

- ECANXxWrite

mikroBasic PRO for dsPIC30/33 and PIC24

ECANxDmaChannellnit

Prototype sub function ECANxDmaChannelInit (dim DmaChannel as word, dim ChannelDir as
word, dim DmaRamBuffAdd as word) as word

Description | The function preforms initialization of the DMA module for ECAN.

Parameters | - DmaChannel: DMA Channel number. Valid values: 0. . 7.
- ChannelDir: transfer direction. Valid values: 1 (DMA RAM to peripheral) and 0 (peripheral to DMA
RAM).
- DmaRamBuffAdd: DMA RAM buffer address. DMA RAM location is MCU dependent, refer to
datasheet for valid address range.

Returns - 0 - if DMA channel parameter is valid
- 0x0001 - if DMA channel is already in use (busy)
- OxFFFF - if DMA channel parameter is invalid

Requires The ECAN routines are supported only by MCUs with the ECAN module.
Microcontroller must be connected to ECAN transceiver which is connected to the ECAN bus.

Example ‘' channel 0 will transfer 8 words from dma ram at 0x4000 to ECANI
ECAN1DmaChannelInit (0, 1, 0x4000)

Notes - ECAN library routine require you to specify the module you want to use. To select the desired

ECAN module, simply change the letter x in the routine prototype for a number from 1 to 2.
- Number of ECAN modules per MCU differs from chip to chip. Please, read the appropriate
datasheet before utilizing this library.
ECANxSetOperationMode

Prototype sub procedure ECANxSetOperationMode (dim mode as word, dim WAIT as word)

Description | Sets the ECAN module to requested mode.

Parameters | - mode: ECAN module operation mode. Valid values: ECAN 0P MODE constants. See ECAN_OP_
MODE constants.
- waTT: ECAN mode switching verification request. If wATT == 0, the call is non-blocking. The
function does not verify if the ECAN module is switched to requested mode or not. Caller must use
ECANxGetOperationMode to verify correct operation mode before performing mode specific operation.
IfwaTT != 0, the call is blocking — the function won’t “return” until the requested mode is set and no
additional verification is necessary.

Returns Nothing.

Requires The ECAN routines are supported only by MCUs with the ECAN module.
Microcontroller must be connected to ECAN transceiver which is connected to the ECAN bus.

Example ‘'set the ECANI module into configuration mode (wait inside ECAN1SetOperationMode
until this mode 1s set)
ECANlSetOperationMode (_ ECAN MODE CONFIG, OxFF)

Notes - ECAN library routine require you to specify the module you want to use. To select the desired ECAN
module, simply change the letter x in the routine prototype for a number from 1 to 2.
- Number of ECAN modules per MCU differs from chip to chip. Please, read the appropriate datasheet
before utilizing this library.

301

mikoBasic PRO for dsPIC30/33 and PIC24

ECANxGetOperationMode

Prototype sub function ECANxGetOperationMode () as word

Description | The function returns current operation mode of the ECAN module. See ECAN_OP_MODE constants
or device datasheet for operation mode codes.

Parameters | None.

Returns Current operation mode.

Requires The ECAN routines are supported only by MCUs with the ECAN module.
Microcontroller must be connected to ECAN transceiver which is connected to the ECAN bus.

Example ‘' check whether the ECAN]1 module 1is 1in Normal mode and 1f it 1is do
something.
if (ECANIlGetOperationMode () = ECAN MODE NORMAL) then
enc.1- :I:.f

Notes - ECAN library routine require you to specify the module you want to use. To select the desired ECAN

module, simply change the letter x in the routine prototype for a number from 1 to 2.
- Number of ECAN modules per MCU differs from chip to chip. Please, read the appropriate datasheet
before utilizing this library.

MikroElektronika 302

mikroBasic PRO for dsPIC30/33 and PIC24

ECANXxInitialize

Prototype

sub procedure ECANxInitialize(dim SJW, BRP, PHSEGl, PHSEG2, PROPSEG, ECAN
CONFIG FLAGS as word)

Description

Initializes the ECAN module.
The internal ECAN module is set to:

- Disable ECAN capture

- Continue ECAN operation in Idle mode

- Abort all pending transmissions

- Clear all transmit control registers

- Fcan clock : Fcy (Fosc/2)

- Baud rate is set according to given parameters
- ECAN mode is set to Normal

- Filter and mask registers remain unchanged

SAM, SEG2PHTS, WAKFIL and DBEN bits are set according to the ECAN CONEFIG FLAGS value.

Parameters

- 5Ju as defined in MCU'’s datasheet (ECAN Module)

- BRP as defined in MCU’s datasheet (ECAN Module)

- PHSEG1 as defined in MCU’s datasheet (ECAN Module)

- PHSEG2 as defined in MCU’s datasheet (ECAN Module)

- PROPSEG as defined in MCU’s datasheet (ECAN Module)

- ECAN CONFIG FLAGS ECAN module configuration flags. Each bit corresponds to the appropriate
ECAN module parameter. Should be formed out of predefined ECAN flag constants. See ECAN_
CONFIG_FLAGS constants.

Returns

Nothing.

Requires

The ECAN routines are supported only by MCUs with the ECAN module.

Microcontroller must be connected to ECAN transceiver which is connected to the ECAN bus.

Example

‘' initialize the ECANI module with appropriate baud rate and message
acceptance flags along with the sampling rules
dim ecan config flags as word

ecan_config flags = ECAN CONFIG SAMPLE THRICE and ' Form value to be used
_ECAN CONFIG PHSEG2 PRG ON and ' with ECANInitialize
_ECAN CONFIG_XTD MSG and
_ECAN CONFIG MATCH MSG TYPE and
_ECAN CONFIG LINE FILTER OFF

ECANlInitialize(1l, 3, 3, 3, 1, ecan config flags) ' initialize the ECANI1 module

Notes

- ECAN mode NORMAL will be set on exit.

- ECAN library routine require you to specify the module you want to use. To select the desired ECAN
module, simply change the letter x in the routine prototype for a number from 1 to 2.

- Number of ECAN modules per MCU differs from chip to chip. Please, read the appropriate datasheet
before utilizing this library.

mikoBasic PRO for dsPIC30/33 and PIC24

ECANXxSelectTxBuffers

Prototype

sub function ECANxSelectTxBuffers (dim txselect as word) as word

Description

The function designates the ECAN module’s transmit buffers.

Parameters

- txselect: transmit buffer select. By setting bits in the txselect lower byte corresponding buffers are
enabled for transmition. The ECAN module supports up to 8 transmit buffers. Also, by clearing bits in
the txselect lower byte corresponding buffers are enabled for reception.

Returns - 0 - if input parameter is valid
- OxFEFFFE - if input parameter is invalid
Requires The ECAN routines are supported only by MCUs with the ECAN module.
Microcontroller must be connected to ECAN transceiver which is connected to the ECAN bus.
The ECAN module must be initialized. See the ECANXxInitialize routine.
Example ‘ Buffers 0 and 2 are enabled for transmition:
ECANl1SelectTxBuffers (0x0005)
Notes - ECAN library routine require you to specify the module you want to use. To select the desired ECAN

module, simply change the letter x in the routine prototype for a number from 1 to 2.
- Number of ECAN modules per MCU differs from chip to chip. Please, read the appropriate datasheet
before utilizing this library.

ECANXxFilterDisable

Prototype sub procedure ECANxFilterDisable (dim fltdis as word)

Description | The function disables receive filters.

Parameters | - {1t d i s: filter disable selection parameter. Each bit corresponds to appropriate filter. By setting bit the
corresponding filter is to be disabled.

Returns Nothing.

Requires The ECAN routines are supported only by MCUs with the ECAN module.
Microcontroller must be connected to ECAN transceiver which is connected to the ECAN bus.
The ECAN module must be initialized. See the ECANXxInitialize routine.

Example ‘"'Filters 0, 4, 8, 12 are to be disabled:
ECANl1FilterDisable (0x1111)

Notes - ECAN library routine require you to specify the module you want to use. To select the desired ECAN
module, simply change the letter x in the routine prototype for a number from 1 to 2.
- Number of ECAN modules per MCU differs from chip to chip. Please, read the appropriate datasheet
before utilizing this library.

MikroElektronika

304

mikroBasic PRO for dsPIC30/33 and PIC24

ECANXxFilterEnable

Prototype sub procedure ECANxFilterEnable (dim flten as word)

Description | The function enables receive filters.

Parameters | - fiten: filter enable selection parameter. Each bit corresponds to appropriate filter. By setting bit the
corresponding filter will be enabled.

Returns Nothing.

Requires The ECAN routines are supported only by MCUs with the ECAN module.
Microcontroller must be connected to ECAN transceiver which is connected to the ECAN bus.
The ECAN module must be initialized. See the ECANXxInitialize routine.

Example ‘' Filters 0, 4, 8, 12 are to be enabled:
ECANlFilterEnable (0x1111)

Notes - ECAN library routine require you to specify the module you want to use. To select the desired ECAN
module, simply change the letter x in the routine prototype for a number from 1 to 2.
- Number of ECAN modules per MCU differs from chip to chip. Please, read the appropriate datasheet
before utilizing this library.

ECANxSetBufferSize

Prototype sub function ECANxSetBufferSize (dim EcanlBuffSize as word) as word

Description | The function configures the total number of receive and transmit buffers in DMA RAM.

Parameters | - EcanlBuffsize: Number of ECAN DMA RAM receive and transmit buffers. Valid values: 4, 6, 8,
12, 16, 24, 32. Each buffer is 16 bytes long.

Returns - 0 - if input parameter is valid
- OxFEFEFF - if input parameter is invalid

Requires The ECAN routines are supported only by MCUs with the ECAN module.
Microcontroller must be connected to ECAN transceiver which is connected to the ECAN bus.
The ECAN module must be initialized. See the ECANXxInitialize routine.

Example ‘ DMA RAM will have 16 rx+tx buffers
ECANl1SetBufferSize (106)

Notes - The same value should be used for DMA RAM buffer definition in the ECan Defs.mbas header file
located in the ECAN project folder.
- ECAN library routine require you to specify the module you want to use. To select the desired ECAN
module, simply change the letter x in the routine prototype for a number from 1 to 2.
- Number of ECAN modules per MCU differs from chip to chip. Please, read the appropriate datasheet
before utilizing this library.

mikoBasic PRO for dsPIC30/33 and PIC24

ECANxSetBaudRate
Prototype sub procedure ECANxSetBaudRate (dim SJW, BRP, PHSEGl, PHSEGZ2, PROPSEG, ECAN
CONFIG FLAGS as word)
Description | Sets ECAN module baud rate. Due to complexity of the ECAN protocol, you can not simply force the
bps value. Instead, use this function when ECAN is in Config mode. Refer to datasheet for details.
SAM, SEG2PHTS and WAKFIL bits are set according to the ECAN CONFIG FLAGS value.
Parameters | - sJu as defined in MCU’s datasheet (ECAN Module)
- BRP as defined in MCU’s datasheet (ECAN Module)
- PHSEG1 as defined in MCU’s datasheet (ECAN Module)
- PHSEG2 as defined in MCU’s datasheet (ECAN Module)
- PROPSEG as defined in MCU’s datasheet (ECAN Module)
- ECAN CONFIG FLAGS ECAN module configuration flags. Each bit corresponds to the appropriate
ECAN module parameter. Should be formed out of predefined ECAN flag constants. See ECAN_
CONFIG_FLAGS constants
Returns Nothing.
Requires The ECAN routines are supported only by MCUs with the ECAN module.
Microcontroller must be connected to ECAN transceiver which is connected to the ECAN bus.
The ECAN module must be in Config mode, otherwise the function will be ignored. See
ECANxSetOperationMode.
Example ' set required baud rate and sampling rules
dim ecan config flags as word
ECAN1SetOperationMode (_ ECAN MODE CONFIG, OxFF) ' set CONFIGURATION mode
(ECAN1 module mast be in config mode for baud rate settings)
ecan_config flags = ECAN CONFIG SAMPLE THRICE and ' Form value to be used
_ECAN CONFIG PHSEG2 PRG ON and ' with ECANISetBaudRate
_ECAN_CONFIG_XTD MSG and
_ECAN CONFIG MATCH MSG TYPE and
_ECAN CONFIG LINE FILTER OFF
ECANlSetBaudRate (1, 3, 3, 3, 1, ecan config flags) ' set ECANI module baud rate
Notes - ECAN library routine require you to specify the module you want to use. To select the desired ECAN

module, simply change the letter x in the routine prototype for a number from 1 to 2.
- Number of ECAN modules per MCU differs from chip to chip. Please, read the appropriate datasheet
before utilizing this library.

mikroBasic PRO for dsPIC30/33 and PIC24

ECANxSetMask

Prototype sub procedure ECANxSetMask (dim ECAN MASK as word, dim val as longint, dim
ECAN CONFIG FLAGS as word)

Description | The function configures appropriate mask for advanced message filtering.

Parameters | - ECAN MASK: ECAN module mask number. Valid values: ECAN_MASK constants. See ECAN_MASK
constants.
- val: mask register value. This value is bit-adjusted to appropriate buffer mask registers
- ECAN CONFIG FLAGS: selects type of messages to filter. Valid values:
- ECAN CONFIG_ ALL VALID MSG,
- ECAN CONFIG MATCH MSG _TYPE & ECAN CONFIG_STD MSG,
- ECAN CONFIG MATCH MSG TYPE & ECAN CONFIG XTD MSG.

See ECAN_CONFIG_FLAGS constants.

Returns Nothing.
Requires The ECAN routines are supported only by MCUs with the ECAN module.

Microcontroller must be connected to ECAN transceiver which is connected to the ECAN bus.

The ECAN module must be in Config mode, otherwise the function will be ignored. See

ECANxSetOperationMode.
Example ' set appropriate filter mask and message type value
ECANlSetOperationMode (_ ECAN MODE CONFIG, OxFF) ' set CONFIGURATION mode

(ECAN1 module must be in config mode for mask settings)

‘' Set all mask0 bits to 1 (all filtered bits are relevant):

' Note that -1 is just a cheaper way to write OxFFFFFFFF.

' Complement will do the trick and fill it up with ones.
ECAN1SetMask (ECAN MASK 0, -1, ECAN CONFIG MATCH MSG TYPE and ECAN
CONFIG_XTD MSG)

Notes - ECAN library routine require you to specify the module you want to use. To select the desired ECAN
module, simply change the letter x in the routine prototype for a number from 1 to 2.

- Number of ECAN modules per MCU differs from chip to chip. Please, read the appropriate datasheet
before utilizing this library.

307 MikroElektronika

mikoBasic PRO for dsPIC30/33 and PIC24

ECANXxSetFilter

Prototype sub procedure ECANxSetFilter (dim ECAN FILTER as word, dim val as longint,
dim ECAN FILTER MASK as word, dim ECAN FILTER RXBUFF as word, dim ECAN
CONFIG FLAGS as word)

Description | The function configures and enables appropriate message filter.

Parameters | - 2CAN FILTER: ECAN module filter number. Valid values: ECAN FILTER constants. See ECAN_
FILTER constants.
- val: filter register value. This value is bit-adjusted to appropriate filter registers
- ECAN FILTER MASK: mask register corresponding to filter. Valid values: ECAN MASK constants.
See ECAN_MASK constants.
- ECAN FILTER RXBUFE: receive buffer corresponding to filter. Valid values: ECAN RX BUFFER
constants. See ECAN_RX_BUFFER constants.
- ECAN CONFIG FLAGS: selects type of messages to filter. Valid values: ECAN CONFIG XTD MSG
and ECAN CONFIG STD MSG. See ECAN_CONFIG_FLAGS constants.

Returns Nothing.

Requires The ECAN routines are supported only by MCUs with the ECAN module.
Microcontroller must be connected to ECAN transceiver which is connected to the ECAN bus.
The ECAN module must be in Config mode, otherwise the function will be ignored. See
ECANxSetOperationMode.

Example ' set appropriate filter value and message type
ECAN1SetOperationMode (ECAN MODE CONFIG, OxFF) ' set CONFIGURATION mode
(ECAN1 module must be in config mode for filter settings)
‘' Set id of filter 10 to 3, mask2, receive buffer 7, extended messages:
ECANlSetFilter (ECAN FILTER 10, 3, [ECAN MASK 2, ECAN RX BUFFER 7, ECAN
CONFIG_XTD_ MSG)

Notes - ECAN library routine require you to specify the module you want to use. To select the desired ECAN
module, simply change the letter x in the routine prototype for a number from 1 to 2.
- Number of ECAN modules per MCU differs from chip to chip. Please, read the appropriate datasheet
before utilizing this library.

mikroBasic PRO for dsPIC30/33 and PIC24

ECANxRead

Prototype

sub function ECANxRead (dim byref id as longint, dim byref data as byte[8],
dim byref datalen as word, dim byref ECAN RX MSG FLAGS as word) as word

Description

If at least one full Receive Buffer is found, it will be processed in the following way:

- Message ID is retrieved and stored to location pointed by the id pointer

- Message data is retrieved and stored to array pointed by the data pointer

- Message length is retrieved and stored to location pointed by the datalen pointer

- Message flags are retrieved and stored to location pointed by the ECAN RX MSG FLAGS pointer

Parameters

- 1d: message identifier address

- data: an array of bytes up to 8 bytes in length

- dataLen: data length address

- ECAN RX MSG FLAGS: message flags address. For message receive flags format refer to the
ECAN RX MSG FLAGS constants. See ECAN_RX_MSG_FLAGS constants.

Returns - 0 if none of Receive Buffers is full
- 0xFEFE if at least one of Receive Buffers is full (message received)
Requires The ECAN routines are supported only by MCUs with the ECAN module.
Microcontroller must be connected to ECAN transceiver which is connected to the ECAN bus.
The ECAN module must be in a mode in which receiving is possible. See ECANxSetOperationMode.
Exmnpm ' check the ECANI module for received messages. If any was received do
something.
dim msg rcvd, rx flags, data len as word
data as byte[8]
msg id as longint
ECANlSetOperationMode(7ECAN7MODE7NORMAL,OXFF) ' set NORMAL mode (ECANI
module must be in a mode in which receiving is possible)
rx flags = 0 ' clear message flags
if (msg rcvd = ECANlRead(msg id, data, data len, rx flags)) then
end if
Notes - ECAN library routine require you to specify the module you want to use. To select the desired ECAN

module, simply change the letter x in the routine prototype for a number from 1 to 2.
- Number of ECAN modules per MCU differs from chip to chip. Please, read the appropriate datasheet
before utilizing this library.

mikoBasic PRO for dsPIC30/33 and PIC24

ECANxWrite

Prototype

sub function ECANxWrite (dim id as longint, dim byref Data as byte[8], dim
Datalen, ECAN TX MSG FLAGS as word) as word

Description

If at least one empty Transmit Buffer is found, the function sends message in the queue for
transmission.

Parameters

- id: ECAN message identifier. Valid values: all 11 or 29 bit values, depending on message type
(standard or extended)

- Data: data to be sent

- DataLen: data length. Valid values: 0. . 8

-ECAN TX MSG FLAGS:message flags. Valid values: ECAN TX MSG FLAGS constants. See ECAN_
TX _MSG_FLAGS constants.

Returns - 0 if all Transmit Buffers are busy
- 0xFFFT if at least one Transmit Buffer is empty and available for transmition
Requires The ECAN routines are supported only by MCUs with the ECAN module.
Microcontroller must be connected to ECAN transceiver which is connected to the ECAN bus.
The ECAN module must be in a mode in which transmission is possible. See
ECANxSetOperationMode.
Example ' send message extended ECAN message with appropriate ID and data
dim tx flags as word
data as byte[8]
msg _id as longint
ECANlSetOperationMode (_ECAN MODE NORMAL, OxFF) ' set NORMAL mode (ECANI
must be in a mode in which transmission 1is possible)
tx_flags = ECAN TX PRIORITY 0 and
_ECAN TX XTD FRAME and
_ECAN TX NO RTR FRAME ' set message flags
ECANlWrite (msg _id, data, 1, tx flags)
Notes - ECAN library routine require you to specify the module you want to use. To select the desired ECAN

module, simply change the letter x in the routine prototype for a number from 1 to 2.
- Number of ECAN modules per MCU differs from chip to chip. Please, read the appropriate datasheet
before utilizing this library.

MikroElektronika 310

mikroBasic PRO for dsPIC30/33 and PIC24

ECAN Constants

There is a number of constants predefined in the ECAN library. You need to be familiar with them in order to be able to
use the library effectively. Check the example at the end of the chapter.

ECAN_OP_MODE Constants

The ECaN 0P MODE constants define ECAN operation mode. The routine ECANxSetOperationMode expect one of
these as their argument:

Copy Code To Clipboard

const
_ECAN MODE BITS as word = 0xO00EQ ' Use this to access opmode bits
_ECAN MODE NORMAL as word = 0x00
_ECAN MODE DISABLE as word = 0x01
ECAN MODE LOOP as word = 0x02
_ECAN MODE LISTEN as word = 0x03
_ECAN MODE CONFIG as word = 0x04

_ECAN MODE LISTEN ALL as word = 0x07

ECAN_CONFIG_FLAGS Constants

The ECAN CONFIG FLAGS constants define flags related to the ECAN module configuration. The routines
ECANXxInitialize and ECANxSetBaudRate expect one of these (or a bitwise combination) as their argument:

Copy Code To Clipboard

const
_ECAN CONFIG DEFAULT as word = OxFF ‘11111111

_ECAN CONFIG PHSEG2 PRG BIT as word = 0x01
_ECAN CONFIG PHSEG2 PRG ON as word = OxFF ' XXXXXXXI
_ECAN CONFIG PHSEG2 PRG OFF as word = OxFE ' XXXXXXX0

_ECAN CONFIG _LINE FILTER BIT as word = 0x02

_ECAN CONFIG LINE FILTER ON as word = OxFF ' XXXXXXIX
_ECAN CONFIG LINE FILTER OFF as word = OxFD ' XXXXXX0X
_ECAN CONFIG_SAMPLE BIT as word = 0x04

_ECAN CONFIG_SAMPLE ONCE as word = OxFF ' XXXXXIXX
_ECAN CONFIG SAMPLE THRICE as word = 0xFB ' XXXXX0XX
_ECAN_CONFIG _MSG_TYPE BIT as word = 0x08

_ECAN_CONFIG STD MSG as word = OxFF ' XXXXIXXX
_ECAN_CONFIG XTD MSG as word = O0xF7 ' XXXXOXXX

_ECAN CONFIG MATCH TYPE BIT as word = 0x20
_ECAN CONFIG ALL VALID MSG as word = 0xDF ' XX0XXXXX
_ECAN CONFIG MATCH MSG TYPE as word = OxFF ' XXIXXXXX

311 MikroElektronika

mikoBasic PRO for dsPIC30/33 and PIC24

You may use bitwise and to adjust the appropriate flags. For example:

Copy Code To Clipboard

init = ECAN CONFIG_SAMPLE THRICE
_ECAN CONFIG PHSEG2 PRG ON

_ECAN CONFIG STD MSG

_ECAN_CONFIG_MATCH MSG TYPE
_ECAN_CONFIG _LINE FILTER OFF

ECANlInitialize(1, 1, 3, 3, 1, init)

ECAN_TX_MSG_FLAGS Constants

and
and
and
and

\

initialize ECANI

ECAN TX MSG FLAGS are flags related to transmission of ECAN message. The routine ECANXxWrite expect one of
these (or a bitwise combination) as their argument:

const
_ECAN TX PRIORITY BITS as
_ECAN TX PRIORITY O as
_ECAN TX PRIORITY 1 as
_ECAN TX PRIORITY 2 as
_ECAN TX PRIORITY 3 as
_ECAN TX FRAME BIT as
_ECAN TX STD FRAME as
_ECAN TX XTD FRAME as
_ECAN TX RTR BIT as
_ECAN TX NO RTR FRAME as
_ECAN TX RTR FRAME as

You may use bitwise and to extract received message status.

Copy Code To Clipboard

word
word
word
word
word

word
word
word

word
word
word

0x03
OxFC
0xFD
O0xFE
O0xFF

0x08
O0xFF
0xF7

0x40
O0xFF
0xBF

' form value to be used with CANSendMessage:

send config = ECAN TX PRIORITY 0 and

_ECAN_TX XTD FRAME

_ECAN_TX NO RTR FRAME

ECANlSendMessage (id, data, 1, send config)

ECAN_RX_MSG_FLAGS Constants

XXXXXX00
XXXXXX01
XXXXXX10
XXXXXX11

XXXXX1XX
XXXXX0XX

XIXXXXXX
XOXXXXXX

For example:

ECAN RX MSG FLAGS are flags related to reception of ECAN message. If a particular bit is set then corresponding
meaning is TRUE or else it will be FALSE.

312

mikroBasic PRO for dsPIC30/33 and PIC24

const
_ECAN RX FILTER BITS as word = 0x000F ' Use this to access filter bits
_ECAN RX FILTER O as word = 0x00 ' filter0 match
_ECAN RX FILTER 1 as word = 0x01 ' filterl match
_ECAN RX FILTER 2 as word = 0x02 '
_ECAN RX FILTER 3 as word = 0x03
_ECAN RX FILTER 4 as word = 0x04
_ECAN RX FILTER 5 as word = 0x05
_ECAN RX FILTER 6 as word = 0x06
_ECAN RX FILTER 7 as word = 0x07
_ECAN RX FILTER 8 as word = 0x08
_ECAN RX FILTER 9 as word = 0x09

_ECAN RX FILTER 10 as word = 0x0A
_ECAN RX FILTER 11 as word = 0x0B
_ECAN RX FILTER 12 as word = 0x0C
_ECAN RX FILTER 13 as word = 0x0D
_ECAN RX FILTER 14 as word = 0x0E v

_ECAN RX FILTER 15 as word = 0OxOF ' filterl5 match

_ECAN RX OVERFLOW as word = 0x10 ' Set if Overflowed else cleared
_ECAN RX INVALID MSG as word = 0x20 ‘' Set if invalid else cleared
_ECAN RX XTD FRAME as word = 0x40 ' Set if XTD message else cleared
_ECAN RX RTR FRAME as word = 0x80 ' Set if RTR message else cleared

You may use bitwise and to extract received message status. For example:
Copy Code To Clipboard
if (MsgFlag and ECAN RX OVERFLOW <> 0) then

}.éeceiver overflow has occurred.

' We have lost our previous message.
end if

ECAN_MASK Constants
The ECAN MASK constants define mask codes. The routine ECANxSetMask expect one of these as their argument:
Copy Code To Clipboard
const
_ECAN MASK 0 as word = 0

_ECAN MASK 1 as word =
_ECAN MASK 2 as word = 2

=

ECAN_FILTER Constants

The ECAN FILTER constants define filter codes. The routine ECANxSetFilter expect one of these as their argument:

313 MikroElektronika

mikoBasic PRO for dsPIC30/33 and PIC24

Copy Code To Clipboard

const
_ECAN FILTER 0
_ECAN FILTER 1
_ECAN FILTER 2
_ECAN FILTER 3
_ECAN FILTER 4
_ECAN FILTER 5
_ECAN FILTER 6
_ECAN FILTER 7
_ECAN FILTER 8
_ECAN FILTER 9
_ECAN FILTER 10
_ECAN FILTER 11
_ECAN FILTER 12
_ECAN FILTER 13
_ECAN FILTER 14
_ECAN FILTER 15

as
as
as
as
as
as
as
as
as
as
as
as
as
as
as
as

word =
word =
word =
word =
word =
word =
word =
word =
word =
word =
word =
word =
word =
word =
word =
word =

ECAN_RX_BUFFER Constants

O J o U W N O

el el e
> WNE O W

The ECAN RX BUFFER constants define RX bufer codes codes. The routine ECANxSetFilter expect one of these as

their argument:
Copy Code To Clipboard

const

_ECAN_RX BUFFER 0
_ECAN RX BUFFER 1
_ECAN_RX BUFFER 2
_ECAN RX BUFFER 3
_ECAN RX BUFFER 4
_ECAN RX BUFFER 5
_ECAN RX BUFFER 6
_ECAN_RX BUFFER 7
_ECAN_RX BUFFER 8
_ECAN RX BUFFER 9
_ECAN_RX BUFFER 10
_ECAN RX BUFFER 11
_ECAN RX BUFFER 12
_ECAN RX BUFFER 13
_ECAN_RX BUFFER 14
_ECAN RX BUFFER 15

as
as
as
as
as
as
as
as
as
as
as
as
as
as
as
as

word
word
word
word
word
word
word
word
word
word
word
word
word
word
word
word

O J oUW N O

el el e
O W oW

MikroElektronika

314

mikroBasic PRO for dsPIC30/33 and PIC24

Library Example

The example demonstrates ECAN protocol. The 1st node initiates the communication with the 2nd node by sending
some data to its address. The 2nd node responds by sending back the data incremented by 1. The 1st node then does
the same and sends incremented data back to the 2nd node, etc.

Code for the first ECAN node:

Copy Code To Clipboard

program ECan 1st

include ECAN Defs

dim Can Init Flags, Can Send Flags, Can Rcv Flags as word ' can flags

Rx Data Len as word ' received data length in bytes
RxTx Data as byte[8] ' can rx/tx data buffer

Msg Rcvd as word ' reception flag

Rx ID as longint

const ID Ist as longint = 12111

const ID 2nd as longint = 3 ' node IDs
sub procedure ClInterrupt() org 0x005A ' ECAN event iterrupt
IFS2.ClIF = 0 ' clear ECAN interrupt flag
if (CIINTF.TBIF <> 0) then ‘'was it tx interrupt?
ClINTF.TBIF = O ‘'if yes clear tx interrupt flag
end if
if (CIINTF.RBIF <> 0) then ‘'was it rx interrupt?
ClINTF.RBIF = 0 ‘' if yes clear rx interrupt flag
end if
end sub
main:

‘' Set PLL : Fosc = ((Fin/PLLPRE)*PLLDIV)/PLLPOST ,; (((10MHz/2)*32)/4) = 20MHz
'\ refer the pic33 family datasheet for more details

CLKDIV = CLKDIV and OxFFEOQO ' CLKDIVbits.PLLPRE = 0
PLLFBD = O0x1E ' PLLFBDbits.PLLDIV = O0x1E
CLKDIV = CLKDIV and OxFF3F ' CLKDIVbits.PLLPOST = 1

CLKDIV = CLKDIV or 0x00CO

AD1PCFGH = OxFFFF N
ADIPCFGL = OxFFFF ‘'all ports digital I/O
AD2PCFGL OxXFFFF N

' Clear Interrupt Flags

|
o

IFSO
IFS1 = 0

319 MikroElektronika

mikoBasic PRO for dsPIC30/33 and PIC24

ECAN1SetMask (ECAN MASK 0, -1, ECAN CONFIG MATCH MSG TYPE and
' set all maskl bits to ones

ECANlSetMask(ECAN MASK 1, -1,
' set all mask2 bits to ones

ECANlSetMask(ECAN MASK 2, -1,

XTD MSG)

ECAN1SetOperationMode (ECAN MODE NORMAL,

IFS2 = 0
IFS3 = 0
IFS4 = 0

' Enable ECAN1 Interrupt

IEC2.C1IE =1 ' enable ECAN1 interrupts
ClINTE.TBIE = 1 ' enable ECAN1 tx interrupt
ClINTE.RBIE = 1 ' enable ECAN1 rx interrupt
PORTB =0 ' clear PORTB
TRISB =0 ' set PORTB as output,
' for received message data displaying
Can Init Flags = 0 '
Can Send Flags = 0 ' clear flags
Can Rcv _Flags = 0 !
Can Send Flags = ECAN TX PRIORITY 0 and ' form value to be used
_ECAN TX XTD FRAME and ' with CANSendMessage
_ECAN TX NO RTR FRAME
Can Init Flags = ECAN CONFIG SAMPLE THRICE and ' form value to be used
_ECAN CONFIG PHSEG2 PRG ON and ' with CANInitialize
_ECAN CONFIG_XTD MSG and
_ECAN CONFIG MATCH MSG _TYPE and
_ECAN CONFIG _LINE FILTER OFF
RxTx Data[0] = 9 ''set initial data to be sent
ECAN1DmaChannelInit (0, 1, @ECANIRxTxRAMBuffer) ‘'"init dma channel 0 for
' dma to ECAN peripheral transfer
ECAN1DmaChannelInit (2, 0, @ECANIRxTxRAMBuffer) ‘'"init dma channel 2 for
' ECAN peripheral to dma transfer
ECANlInitialize(1l, 3, 3, 3, 1, Can Init Flags) ‘'initialize ECAN

ECANl1SetBufferSize (ECAN1IRAMBUFFERSIZE) ' set

ECANl1SelectTxBuffers (0x000F)

' 0x000F
ECAN1SetOperationMode (ECAN MODE CONFIG, OxFF)

set all mask3 bits to ones
ECANlSetFilter (ECAN FILTER 10, ID 2nd, ECAN MA
set id of filterl0 to 2nd node ID

0xFF)

number of rx+tx buffers in DMA RAM
' select transmit buffers
buffers 0:3 are transmit buffers

' set CONFIGURATION mode

_ECAN CONFIG XTD MSG)

_ECAN CONFIG MATCH MSG TYPE and ECAN CONFIG XTD MSG)

_ECAN CONFIG MATCH MSG TYPE and ECAN CONFIG XTD MSG)

SK_2, ECAN RX BUFFER 7, ECAN CONFIG

‘' assign mask2 to filterlO
‘' assign buffer7 to filterlO

' set NORMAL mode

MikroElektronika

316

mikroBasic PRO for dsPIC30/33 and PIC24

ECAN1Write (ID 1st, RxTx Data, 1, Can Send Flags) ' send initial message
while TRUE ' endless loop
Msg Rcvd = ECANlRead(Rx ID , RxTx Data , Rx Data Len, Can Rcv Flags) ' receive
message
if ((Rx _ID = ID 2nd) and (Msg Rcvd <> 0)) <> 0 then ' if message received check 1id
PORTB = RxTx Data[0] ' id correct, output data at PORTB

Inc (RxTx Datal[0])
Delay ms (10)
ECAN1Write (ID 1st, RxTx Data, 1, Can Send Flags) ' send incremented data back
end if
wend
end.

Code for the second ECAN node:
Copy Code To Clipboard
program ECAN 2nd

include ECAN Defs

dim Can Init Flags, Can_ Send Flags, Can Rcv _Flags as word ' can flags
Rx Data Len as word ' received data length in bytes
RxTx Data as byte[8] ' can rx/tx data buffer
Msg Rcvd as word ' reception flag
Rx ID as longint

const ID 1st as longint = 12111

const ID 2nd as longint = 3 ' node IDs
sub procedure ClInterrupt () org O0x005A ' ECAN event iterrupt
IFS2.ClIF = 0 ' clear ECAN interrupt flag
if (CIINTF.TBIF <> 0) then '‘'was it tx Iinterrupt?
ClINTF.TBIF = O ‘' if yes clear tx interrupt flag
end if
if (C1INTF.RBIF <> 0) then '‘'was it rx interrupt?
ClINTF.RBIF = 0 ‘'if yes clear rx interrupt flag
end if
end sub
main:

‘ Set PLL : Fosc = ((Fin/PLLPRE)*PLLDIV)/PLLPOST ; (((10MHz/2)*32)/4) = 20MHz
'\ refer the pic33 family datasheet for more details

CLKDIV CLKDIV and OxFFEOQ ' CLKDIVbits.PLLPRE = 0
PLLEBD 0x1E ‘ PLLFBDbits.PLLDIV = 0Ox1E
CLKDIV CLKDIV and OxFF3F ' CLKDIVbits.PLLPOST = 1
CLKDIV CLKDIV or 0x00CO

317 MikroElektronika

mikoBasic PRO for dsPIC30/33 and PIC24

AD1PCFGH OxFFFEFF
AD1PCFGL OxXFFFF
AD2PCFGL = OxFFFF

' Clear Interrupt Flags

IFsSO =
IFS1 =
IFS2 =
IFS3 =
IFs4 =

O O O oo

' Enable ECAN]1 Interrupt

IEC2.C1IE =1
ClINTE.TBIE = 1
ClINTE.RBIE = 1
PORTB =0
TRISB =0

Can Init Flags = 0

\

‘'all ports digital I/0

\

' enable ECAN1 interrupts
' enable ECAN1 tx interrupt
' enable ECAN1 rx interrupt

' clear PORTB
' set PORTB as output,
' for received message data displaying

\

Can_Send:Flags =0 ' clear flags

Can Rcv _Flags = 0 !

Can _Send Flags = ECAN TX PRIORITY 0 and ' form value to be used
_ECAN TX XTD FRAME and ' with CANSendMessage

_ECAN_TX _NO RTR FRAME

Can Init Flags = ECAN CONFIG SAMPLE THRICE and ' form value to be used
_ECAN CONFIG PHSEG2 PRG ON and ' with CANInitialize
_ECAN CONFIG_XTD MSG and
_ECAN CONFIG MATCH MSG _TYPE and
_ECAN CONFIG_LINE FILTER OFF

ECAN1DmaChannelInit (0, 1, @ECANIRxTxRAMBuffer) ‘'init dma channel 0 for

' dma to ECAN peripheral transfer
ECANl1DmaChannelInit (2, 0, @ECANIRxTxRAMBuffer) ‘'"'init dma channel 2 for

' ECAN peripheral to dma transfer
ECANlInitialize(1l, 3, 3, 3, 1, Can Init Flags) ‘"'initialize ECAN
ECANlSetBufferSize (ECAN1RAMBUFFERSIZE) ‘' set number of rx+tx buffers in DMA RAM

ECANl1SelectTxBuffers (0x000F)

' select transmit buffers
' 0x000F = buffers 0:3 are transmit buffers

ECANl1SetOperationMode (_ ECAN MODE CONFIG, OxFF) ' set CONFIGURATION mode

ECAN1SetMask(ECAN MASK 0, -1,
' set all maskl bits to ones

ECAN1SetMask (_ ECAN MASK 1, -1,
‘'set all mask2 bits to ones

ECANlSetMask (ECAN MASK 2, -1,
‘'set all mask3 bits to ones

ECAN1SetFilter (ECAN FILTER 10,

_ECAN CONFIG MATCH MSG TYPE and ECAN CONFIG XTD MSG)
_ECAN_CONFIG MATCH MSG _TYPE and ECAN CONFIG XTD MSG)
_ECAN CONFIG MATCH MSG TYPE and ECAN CONFIG XTD MSG)

ID 1st, ECAN MASK 2, ECAN RX BUFFER 7, ECAN CONFIG

XTD MSG) ' set id of filterl0 to 1lst node ID

'assign buffer7 to filterl0

ECANlSetOperationMode (_ ECAN MODE NORMAL, OxFF) ' set NORMAL mode

MikroElektronika

318

mikroBasic PRO for dsPIC30/33 and PIC24

while TRUE

Msg Rcvd = ECANlRead(Rx ID, RxTx Data, Rx Data Len, Can Rcv Flags) V' receive
message
if ((Rx_ID = ID 1lst) and (Msg Rcvd <> 0) <> 0) then ' if message received check 1id
PORTB = RxTx Data[0] ' id correct, output data at PORTB
Inc (RxTx Datal[0]) ' increment received data
ECAN1Write (ID 2nd, RxTx Data, 1, Can Send Flags) ' send incremented data back
end if
wend

end.

HW Connection

» CAN RX of MCU

CAN TX of MCU

10R

T
TX-CAN RS

1 B
”—j[GND CANH];—
vee p———| vec canL

i

RXD Wref

J.

MCP2551

Shielded / L“I

twisted pair
Example of interfacing ECAN transceiver with MCU and bus

EEPROM Library

EEPROM data memory is available with a number of dsPIC30 family and some PIC24 family MCU’s. The mikroBasic
PRO for dsPIC30/33 and PIC24 includes a library for comfortable work with MCU’s internal EEPROM.

Important: Only 24F04KA201 and 24F16KA102 of PIC24 family of MCUs have EEPROM memory.

Library Routines

- EEPROM_Erase
- EEPROM_Erase_Block
- EEPROM_Read
- EEPROM_Write
- EEPROM_Write_Block

319

mikoBasic PRO for dsPIC30/33 and PIC24

EEPROM Erase

Prototype sub procedure EEPROM Erase (dim address as longint)
Description | Erases a single (16-bit) location from EEPROM memory.
Parameters | - address: address of the EEPROM memory location to be erased.
Returns Nothing.
Requires Nothing.
Example dim eeAddr as longint
ééAddr = 0x7FFC80
EEPROM Erase (eeAddr)
Notes CPU is not halted for the Data Erase cycle. The user can poll WR bit, use NVMIF or Timer IRQ to

detect the end of erase sequence.

EEPROM_Erase_ Block

Prototype sub procedure EEPROM Erase Block(dim address as longint)

Description | Erases one EEPROM row from EEPROM memory; For dsPIC30 family it is 16 words long, for
24F04KA201 and 24F16KA102 family it is 8 words long.

Parameters | - address: starting address of the EEPROM memory block to be erased.

Returns Nothing.

Requires Nothing.

Example dim eeAddr as longint
éééddr = Ox7FFC20
EEPROM Erase Block (eeAddr)

Notes CPU is not halted for the Data Erase cycle. The user can poll WR bit, use NVMIF or Timer IRQ to
detect the end of erase sequence.

EEPROM_Read

Prototype sub function EEPROM Read(dim address as longint) as word
Description | Reads data from specified address.
Parameters | - address: address of the EEPROM memory location to be read.
Returns Word from the specified address.
Requires It is the user’s responsibility to obtain proper address parity (in this case, even).
Example dim eeAddr as longint
temp as word
ééAddr = Ox7FFC20
temp = EEPROM Read (eeAddr)
Notes None.
MikroElektronika

320

mikroBasic PRO for dsPIC30/33 and PIC24

EEPROM_Write
Prototype sub procedure EEPROM Write (dim address as longint, dim data as word)
Description | Writes data to specified address.
Parameters | - address: address of the EEPROM memory location to be written.
- data: data to be written.
Returns Nothing.
Requires Nothing.
Example dim wrAddr as longint
eeData as word
éébata = 0OxAAAA
wrAddr = Ox7FFC30
EEPROM Write (wrAddr, eeData)
Notes Specified memory location will be erased before writing starts.
EEPROM_Write_Block
Prototype sub procedure EEPROM Write Block(dim address as longint, dim byref data as
word[100])
Description | Writes one EEPROM row (16 words block) of data.
Parameters | - address: starting address of the EEPROM memory block to be written.
- data: data block to be written.
Returns Nothing.
Requires It is the user’s responsibility to maintain proper address alignment. In this case, address has to be a
multiply of 32, which is the size (in bytes) of one row of MCU’s EEPROM memory.
Example dim wrAddr as longint
data as string[1l6]
&;Addr = 0x7FFC20
data = “mikroElektronika”
EEPROM Write Block(wrAddr, data)
Notes - Specified memory block will be erased before writing starts.
- This routine is not applicable to the 24F04KA201 and 24F16KA102 family of MCUs, due to the
architecture specifics.

Library Example

This project demonstrates usage of EEPROM library functions for dsPIC30F4013. Each EEPROM (16-bit) location can
be written to individually, or in 16-word blocks, which is somewhat faster than the former. If Writing in blocks, EEPROM
data start address must be a multiply of 16. Please read Help for more details on the library functions!

Copy Code To Clipboard

program Eeprom

dim eeData, i as word
eeAddr as longword
dArr as word[16]

321

mikoBasic PRO for dsPIC30/33 and PIC24

main:

ADPCFG = OxFFFF ' Disable analog inputs
TRISB = 0 ' PORTB as output

LATB = OXFFFF

eeAddr = 0x7FFCOO0 ' Start address of EEPROM
eeData = 0 ' Data to be written

while (eeData <= 0x00FF)

Eeprom Write (eeAddr, eeData) ‘" Write data into EEPROM
Inc (eeData)
while (WR bit) ‘" Wait for write to finish,
nop
wend
LATB = Eeprom Read (eeAddr) ' then, read the just-written data.
eeAddr = eeAddr + 2 ' Next address of EEPROM memory location

Delay ms (100)
wend

Delay ms (1000) ‘' Wait 1 second.

eeData = O0xAAAA

for i = 0 to 1 ‘" Initializing array of 16 integers with data
dArr[i] = eeData
eeData = not eeData

next i

Eeprom Write Block (0x7FFC20, dArr) ' Write entire row of EEPROM data

while (WR bit) ‘" Wait for write to finish
nop

wend

eeAddr = 0xT7FFC20 ' Address of EEPROM where reading should start

for i = 0 to 15 ' Read the data back
LATB = Eeprom Read (eeAddr) ' and show it on PORTB
eeAddr = eeAddr + 2 ' Next address of EEPROM memory location
Delay ms (500)

next i

end.

MikroElektronika 322

mikroBasic PRO for dsPIC30/33 and PIC24

Epson S1D13700 Graphic Lcd Library

The mikroBasic PRO for dsPIC30/33 and PIC24 provides a library for working with Glcds based on Epson S1D13700
controller.

The S1D13700 Glcd is capable of displaying both text and graphics on an LCD panel. The S1D13700 Glcd allows
layered text and graphics, scrolling of the display in any direction, and partitioning of the display into multiple screens.
Itincludes 32K bytes of embedded SRAM display memory which is used to store text, character codes, and bit-mapped
graphics.

The S1D13700 Glcd handles display controller functions including:
- Transferring data from the controlling microprocessor to the buffer memory
- Reading memory data, converting data to display pixels
- Generating timing signals for the LCD panel
The S1D13700 Glcd is designed with an internal character generator which supports 160, 5x7 pixel characters in

internal mask ROM (CGROM) and 64, 8x8 pixel characters incharacter generator RAM (CGRAM).
When the CGROM is not used, up to 256, 8x16 pixel characters are supported in CGRAM.

External dependencies of the Epson S1D13700 Graphic Lcd Library

The following variables must be defined

in all projects using S1D13700 Graphic | Description: Example:

Lcd library:

im S1D13700 DATA £
cdim SLbLIrn. a5 byRe SEEgystem data bus. dim S1D13700 DATA at PORTD
external .
di S1D13700 WR bit sf L . ; . .
dmS Ses SPEE S Write signal. dim S1D13700 WR as sbit at LATC2 bit
external - -
di S1D13700 RD bit sf) . . .
o - o8 FPEE ST Read signal. dim S1D13700 RD as sbit at LATCl bit
external . _
di S1D13700 A0 bit sf
imo S ShYas SR SEE gy stem Address pin. dim S1D13700 A0 as sbit at LATCO bit
external - -
dim S1D13700 RES as sbit sf) . . .
o —~ @5 SRR SET] Reset signal. dim S1D13700 RES as sbit at LATCA bit
external . _
di S1D13700 CS as sbit sf
o —o0 @8 SRR SRR Chip select. dim S1D13700 CS as sbit at LATCA bit

external

dim S1D13700 DATA Direction as | Direction of the system data bus [dim S1D13700 DATA Direction sbit at
byte sfr external pins. TRISD

dim S1D13700 WR Direction as Direction of the Write pin dim S1D13700 WR Direction as sbit at
sbit sfr external pin. TRISC2 bit

dim S1D13700_RD Direction as Direction of the Read pin dim S1D13700_RD Direction as sbit at
sbit sfr external rect pin. TRISC1 bit

dim S1D13700 A0 Direction as | Direction of the System Address | dim S1D13700 A0 Direction as sbit at
sbit sfr external pin. TRISC2 bit

dim S1D13700 RES Direction as Direction of the Reset pin dim S1D13700 RES Direction as sbit
sbit sfr external pin. at TRISCO bit

dim S1D13700 CS Direction as Direction of the Chio select pin dim S1D13700 CS Direction as sbit at
sbit sfr external P pin. TRISC4 bit

323 MikroElektronika

mikoBasic PRO for dsPIC30/33 and PIC24

Library Routines

- S1D13700_lInit

- $S1D13700_Write_Command
- S1D13700_Write_Parameter
- S1D13700_Read_Parameter
- S1D13700_Fill

- S1D13700_GrkFill

- S1D13700_TxtFill

- S1D13700_Display_GrLayer
- S1D13700_Display_TxtLayer
- S1D13700_Set_Cursor

- S1D13700_Display_Cursor

- S1D13700_Write_Char

- S1D13700_Write_Text

- S1D13700_Dot

- S1D13700_Line
-S1D13700_H_Line
-S1D13700_V_Line

- S1D13700_Rectangle

- S1D13700_Box

- S1D13700_Rectangle_Round_Edges
- S1D13700_Rectangle_Round_Edges_Fill
- S1D13700_Circle

- S1D13700_Circle_Fill

- S1D13700_Image

- S1D13700_Partiallmage

MikroElektronika 324

mikroBasic PRO for dsPIC30/33 and PIC24

S1D13700_Init

Prototype

sub procedure S1D13700 Init (dim width as word, dim height as word)

Returns

Nothing.

Description

Initializes S1D13700 Graphic Lcd controller.
Parameters:

- width: width of the Glcd panel.
- height: height of the Glcd panel.

Requires

Global variables:

-S1D13700 Data Port:Data Bus Port.

- 51D13700 wWRr: Write signal pin.

- 51D13700 RD: Read signal pin.
-S1D13700 A0: Command/Data signal pin.
- 51D13700 RES: Reset signal pin.

- S1D13700 cs: Chip Select signal pin.

-51D13700 Data Port Direction:Data Bus Port Direction.
-S1D13700 WR Direction: Direction of Write signal pin.
-S51D13700 RD Direction: Direction of Read signal pin.
-S1D13700 A0 Direction: Direction of Command/Data signal pin.
-S1D13700 RES Direction: Direction of Reset signal pin.
-S1D13700 cs Direction: Direction of Chip Select signal pin.

must be defined before using this function.

Example

' S1D13700 module connections

dim S1D13700 Data Port as byte at PORTD
dim S1D13700 WR as sbit at LATC2 bit
dim S1D13700 RD as sbit at LATCl bit
dim S1D13700 A0 as sbit at LATCO bit
dim SID13700 RES as sbit at LATC4 bit
dim S1D13700 CS as sbit at LATC5S bit

dim S1D13700 Data Port Direction as byte at TRISD
dim S1D13700 WR Direction as sbit at TRISC2 bit
dim S1D13700 RD Direction as sbit at TRISC1 bit
dim S1D13700 AOQ Direction as sbit at TRISCO bit
dim S1D13700 RES Direction as sbit at TRISC4 bit
dim S1D13700 CS Direction as sbit at TRISCS5 bit

‘" End of SI1D13700 module connections

‘'init display for 320 pixel width, 240 pixel height
S1D13700 Init (320, 240)

325

mikoBasic PRO for dsPIC30/33 and PIC24

S1D13700_ Write_ Command

Prototype

sub procedure S1D13700 Write Command(dim command as byte)

Returns Nothing.

Description | Writes a command to S1D13700 controller.

Parameters:

- command: command to be issued:

Value

Description

S1D13700 SYSTEM SET

General system settings.

S1D13700 POWER SAVE

Enter into power saving mode.

S1D13700 DISP_ON

Turn the display on.

S1D13700 DISP OFF

Turn the display off.

S1D13700_ SCROLL

Setup text and graphics address regions.

S1D13700 CS_RIGHT

Cursor moves right after write to display
memory.

S1D13700 CS LEFT

Cursor moves left after write to display
memory.

S1D13700_CS_UP

Cursor moves up after write to display
memory.

S1D13700_CS_DOWN

Cursor moves down after write to display
memory.

S1D13700 OVLAY

Configure how layers overlay.

S1D13700 CGRAM ADR

Configure character generator RAM address.

S1D13700 HDOT SCR

Set horizontal scroll rate.

S1D13700 CSRW

Set the cursor address.

S1D13700 CSRR

Read the cursor address.

S1D13700 GRAYSCALE

Selects the gray scale depth, in bits-per-pixel
(bpp).

S1D13700 MEMWRITE

Write to display memory.

S1D13700_ MEMREAD

Read from display memory.

Requires

Glcd module needs to be initialized. See the S1D13700_1Init routine.

\

Example

Turn the display on

S1D13700 Write Command (S1D13700 DISP ON)

326

mikroBasic PRO for dsPIC30/33 and PIC24

S1D13700_ Write Parameter

Prototype sub procedure S1D13700 Write Parameter (dim parameter as byte)
Returns Nothing.
Description | Writes a parameter to S1D13700 controller.

Parameters:

- parameter: parameter to be written.
Requires Glcd module needs to be initialized. See the S1D13700_Init routine.

Previously, a command must be sent through S1D13700_Write_Command routine.
Example S1D13700 Write Command(S1D13700 CSRW) ' set cursor address

send lower byte of cursor address
send higher byte cursor address

SlD13700:Write:Parameter(Lo(Start)) N
S1D13700 Write Parameter (Hi(start))

S1D13700_Read_Parameter

Prototype sub function S1D13700 Read Parameter () as byte

Returns Nothing.

Description | Reads a parameter from GLCD port.

Requires Glcd module needs to be initialized. See the S1D13700_Init routine.

Example parameter = S1D13700 Read Parameter ()

S1D13700_Fill

Prototype sub procedure S1D13700 Fill(dim d as byte, dim start as word, dim len as
word)

Returns Nothing.

Description | Fills Glcd memory block with given byte.
Parameters:
- d: byte to be written.
- start: starting address of the memory block.
- len: length of the memory block in bytes.

Requires Glcd module needs to be initialized. See the S1D13700_1Init routine.

Example '\ from the starting address of 0x3000, fill the memory block size of Ox7FFF
with 0x20
S1D13700 Fill(0x20, 0x3000, Ox7FFF)

321

mikoBasic PRO for dsPIC30/33 and PIC24

S1D13700_GrFill

Prototype sub procedure S1D13700 GrFill (dim d as byte)
Returns Nothing.
Description | Fill graphic layer with appropriate value (0 to clear).

Parameters:

- d: value to fill graphic layer with.
Requires Glcd module needs to be initialized. See the S1D13700_1Init routine.
Example '\ clear current graphic panel

S1D13700 GrFill (0)

S1D13700_TxtFill

Prototype sub procedure S1D13700 TxtFill (dim d as byte)
Returns Nothing.
Description | Fill current text panel with appropriate value (0 to clear).
Parameters:
- d: this value will be used to fill text panel.
Requires Glcd module needs to be initialized. See the S1D13700_Init routine.
Example ' clear current text panel
S1D13700 TxtFill (0)

S1D13700_Display_GrLayer

Prototype <sub procedure S1D13700 Display GrLayer (dim mode as byte)
Returns Nothing.
Description | Display selected graphic layer.
Parameters:
- mode: graphic layer mode. Valid values:
Value Description
S1D13700 LAYER OFF Turn off graphic layer.
S1D13700 LAYER ON Turn on graphic layer.
S1D13700 LAYER FLASH 2Hz Turn on graphic layer and flash it at the rate of 2 Hz.
S1D13700 LAYER FLASH 16Hz Turn on graphic layer and flash it at the rate of 16 Hz.
Requires Glcd module needs to be initialized. See the S1D13700_Init routine.
Example ' Turn on graphic layer
S1D13700 Display GrLayer (S1D13700 LAYER ON)
MikroElektronika

328

mikroBasic PRO for dsPIC30/33 and PIC24

S1D13700_Display_TxtLayer

Prototype sub procedure S1D13700 Display TxtLayer (dim mode as byte)

Returns Nothing.

Description | Display selected text layer.
Parameters:

- mode: text layer mode. Valid values:

Value Description
S1D13700 LAYER OFF Turn off graphic layer.
S1D13700 LAYER ON Turn on graphic layer.
S1D13700 LAYER FLASH 2Hz Turn on graphic layer and flash it at the rate of 2 Hz.
S1D13700 LAYER FLASH 16Hz Turn on graphic layer and flash it at the rate of 16 Hz.

Requires Glcd module needs to be initialized. See the S1D13700_Init routine.

Example ' Display on text layer
S1D13700 Display TxtLayer (S1D13700 LAYER ON)

S1D13700_Set Cursor

Prototype sub procedure S1D13700 Set Cursor(dim width as byte, dim height as byte,
dim mode as byte)

Returns Nothing.

Description | Sets cursor properties.
Parameters:

- width: in pixels-1 (must be less than or equal to the horizontal char size).
- height:inlines-1 (must be less than or equal to the vertical char size).
- mode: cursor mode. Valid values:

Value Description
S1D13700 CURSOR_UNDERSCORE Set cursor shape - underscore.
S1D13700 CURSOR_BLOCK Set cursor shape - block.

Requires Glcd module needs to be initialized. See the S1D13700_Init routine.

Example ' set cursor with the following properties : width 5px, height 10px, cursor

shape - block
S1D13700 Set Cursor (5, 10, S1D13700 CURSOR BLOCK)

329 MikroElektronika

mikoBasic PRO for dsPIC30/33 and PIC24

S1D13700_Display_Cursor

Prototype sub procedure S1D13700 Display Cursor (dim mode as byte)
Returns Nothing.
Description | Displays cursor.
Parameters:
- mode: mode parameter. Valid values:
Value Description
S1D13700 CURSOR OFF Turn off graphic layer.
S1D13700 CURSOR_ON Turn on graphic layer.
S$1D13700_CURSOR_FLASH 2Hz Turn on graphic layer and flash it at the rate of 2 Hz.
S1D13700 CURSOR_FLASH 16Hz Turn on graphic layer and flash it at the rate of 16 Hz.
Requires Glcd module needs to be initialized. See the S1D13700_Init routine.
Example ' set cursor on
S1D13700 Display Cursor (S1D13700 CURSOR ON)

S1D13700_Write_Char

Prototype sub procedure S1D13700 Write Char(dim c as char, dim x as word, dim y as
word, dim mode as byte)
Returns Nothing.
Description | Writes a char in the current text layer of Glcd at coordinates (x, y).
Parameters:
- c: char to be written.
- x: char position on x-axis (column).
- v: char position on y-axis (row).
- mode: mode parameter. Valid values:
Value Description
In the OR-Mode, text and graphics can be displayed and the data is
. . - logically “OR-ed”.
S 37 EF E
LDLIT00_OVERLAY_OR This is the most common way of combining text and graphics, for
example labels on buttons.
S1D13700 OVERLAY XOR In this mode, the text and gyaphic_s data z:\re combined via the logical
- - exclusive OR”.
S1D13700 OVERLAY AND The text and graphic data sh:)wn on dis.plazl are combined via the logical
- - AND function”.
Requires Glcd module needs to be initialized. See the S1D13700_1Init routine.
Example S1D13700 Write Char (“A”,22,23,51D13700 OVERLAY OR)

MikroElektronika 330

mikroBasic PRO for dsPIC30/33 and PIC24

S1D13700_ Write Text

Prototype sub procedure S1D13700 Write Text (dim byref str as string, dim x, y as word,
dim mode as byte)

Returns Nothing.
Description | Writes text in the current text panel of Glcd at coordinates (X, y).

Parameters:

- str: text to be written.

- x: text position on x-axis (column).

- v: text position on y-axis (row).

- mode: mode parameter. Valid values:

Value Description

In the OR-Mode, text and graphics can be displayed and the data is
logically “OR-ed”.
This is the most common way of combining text and graphics, for
example labels on buttons.

S1D13700 OVERLAY OR

In this mode, the text and graphics data are combined via the logical

S1D13700 OVERLAY XOR “ : »
- - exclusive OR”.

The text and graphic data shown on display are combined via the logical

S1D13700 OVERLAY AND piay
’ - — “AND function”.

Requires Glcd module needs to be initialized. See the S1D13700_Init routine.
Example S1D13700 Write Text (‘EPSON LIBRARY DEMO, WELCOME !’, 0, 0, S1D13700 OVERLAY OR)

S1D13700_Dot

Prototype sub procedure S1D13700 Dot (dim x as word, dim y as word, dim color as
byte)

Returns Nothing.
Description | Draws a dot in the current graphic panel of Glcd at coordinates (x, y).

Parameters:

- x: dot position on x-axis.
- v: dot position on y-axis.
- color: color parameter. Valid values:

Value Description
S1D13700 BLACK Black color.
S1D13700 WHITE White color.

Requires Glcd module needs to be initialized. See the S1D13700_Init routine.
Example S1D13700 Dot (50, 50, S1D13700 WHITE)

331 MikroElektronika

mikoBasic PRO for dsPIC30/33 and PIC24

S1D13700_Line

Prototype sub procedure S1D13700 Line(dim x0, y0, x1, yl as word, dim pcolor as
byte)

Returns Nothing.

Description | Draws a line from (x0, y0) to (x1, y1).
Parameters:

- x0: x coordinate of the line start.
- v0:y coordinate of the line end.
- x1: x coordinate of the line start.
- y1:y coordinate of the line end.
- pcolor: color parameter. Valid values:

Value Description
S1D13700 BLACK Black color.
S1D13700 WHITE White color.

Requires Glcd module needs to be initialized. See the S1D13700_1Init routine.
Example S1D13700 Line(0, O, 239, 127, S1D13700 WHITE)

S1D13700_H_Line

Prototype sub procedure S1D13700 H Line(dim x start, x end, y pos as word, dim color
as byte)

Returns Nothing.

Description | Draws a horizontal line.
Parameters:

- x_start: x coordinate of the line start.
- x_end: x coordinate of the line end.

- v_pos: line position on the y axis.

- pcolor: color parameter. Valid values :

Value Description
S1D13700 BLACK Black color.
S1D13700 WHITE White color.

Requires Glcd module needs to be initialized. See the S1D13700_1Init routine.
Example S1D13700 Line(0, O, 239, 127, S1D13700 WHITE)

MikroElektronika 332

mikroBasic PRO for dsPIC30/33 and PIC24

S1D13700_V_Line

Prototype sub procedure S1D13700 V Line(dim y start, y end, x pos as word, dim color
as byte)

Returns Nothing.

Description | Draws a horizontal line.
Parameters:

-y start:y coordinate of the line start.
- y_end: y coordinate of the line end.

- x_pos: line position on the x axis.

- pcolor: color parameter. Valid values:

Value Description
S1D13700 BLACK Black color.
S1D13700 WHITE White color.

Requires Glcd module needs to be initialized. See the S1D13700_Init routine.
Example S1D13700 Line(0, O, 239, 127, S1D13700 WHITE)

S1D13700_Rectangle

Prototype sub procedure S1D13700 Rectangle(dim x0, y0, x1, yl as word, dim pcolor as
byte)

Returns Nothing.

Description | Draws a rectangle on Glcd.
Parameters:

- x0: x coordinate of the upper left rectangle corner.
- y0:y coordinate of the upper left rectangle corner.
- x1: x coordinate of the lower right rectangle corner.
- y1:y coordinate of the lower right rectangle corner.
- pcolor: color parameter. Valid values:

Value Description
S1D13700 BLACK Black color.
S1D13700 WHITE White color.

Requires Glcd module needs to be initialized. See the S1D13700_Init routine.
Example S1D13700 rectangle (20, 20, 219, 107, S1D13700 WHITE)

mikoBasic PRO for dsPIC30/33 and PIC24

S1D13700_Box

Prototype sub procedure S1D13700 Box(dim x0, y0, x1, yl as word, dim pcolor as byte)

Returns Nothing.

Description | Draws a rectangle on Glcd.
Parameters:

- x0: x coordinate of the upper left rectangle corner.
- v0: y coordinate of the upper left rectangle corner.
- x1: x coordinate of the lower right rectangle corner.
- y1:y coordinate of the lower right rectangle corner.
- pcolor: color parameter. Valid values:

Value Description
S1D13700 BLACK Black color.
S1D13700 WHITE White color.

Requires Glcd module needs to be initialized. See the S1D13700_Init routine.
Example S1D13700 Box (0, 119, 239, 127, S1D13700 WHITE)

S1D13700_Rectangle_Round_Edges

Prototype sub procedure S1D13700 Rectangle Round Edges(dim x upper left as word, dim
y upper left as word, dim x bottom right as word, dim y bottom right as
word, dim round radius as word, dim color as byte)

Returns Nothing.

Description | Draws a rounded edge rectangle on Glcd.
Parameters:

-x upper left:x coordinate of the upper left rectangle corner.

-y upper left:y coordinate of the upper left rectangle corner.

- x _bottom right:x coordinate of the lower right rectangle corner.
-y bottom right:y coordinate of the lower right rectangle corner.
- round_radius: radius of the rounded edge.

- pcolor: color parameter. Valid values:

Value Description
S1D13700 BLACK Black color.
S1D13700 WHITE White color.

Requires Glcd module needs to be initialized. See the S1D13700_Init routine.
Example S1D13700 Rectangle Round Edges (20, 20, 219, 107, 12, S1D13700 WHITE)

MikroElektronika 334

mikroBasic PRO for dsPIC30/33 and PIC24

S1D13700_Rectangle_Round_Edges_Fill

Prototype sub procedure S1D13700 Rectangle Round Edges Fill (dim x upper left as word,
dim y upper left as word, dim x bottom right as word, dim y bottom right as
word, dim round radius as word, dim color as byte)

Returns Nothing.
Description | Draws a filled rounded edge rectangle on Glcd.

Parameters:

- x_upper left:x coordinate of the upper left rectangle corner.

-y upper left:y coordinate of the upper left rectangle corner.

-x bottom right: x coordinate of the lower right rectangle corner.
-y bottom right:y coordinate of the lower right rectangle corner.
- round radius: radius of the rounded edge.

- pcolor: color parameter. Valid values:

Value Description
S1D13700 BLACK Black color.
S1D13700 WHITE White color.

Requires Glcd module needs to be initialized. See the S1D13700_Init routine.
Example S1D13700 Rectangle Round Edges Fill (20, 20, 219, 107, 12, S1D13700 WHITE)

S1D13700_Circle

Prototype sub procedure S1D13700 Circle(dim x center as word, dim y center as word,
dim radius as word, dim color as byte)

Returns Nothing.

Description | Draws a circle on Glcd.
Parameters:

- x_center: x coordinate of the circle center.
-y center:y coordinate of the circle center.
- radius: radius size.

- color: color parameter. Valid values:

Value Description
S1D13700 BLACK Black color.
S1D13700 WHITE White color.

Requires Glcd module needs to be initialized. See the S1D13700_Init routine.
Example S1D13700 Circle (120, 64, 110, S1D13700 WHITE)

mikoBasic PRO for dsPIC30/33 and PIC24

S1D13700_Circle_Fill

Prototype sub procedure S1D13700 Circle Fill(dim x center as word, dim y center as
word, dim radius as word, dim color as byte)
Returns Nothing.
Description | Draws a filled circle on Glcd.
Parameters:
- x_center: x coordinate of the circle center.
-y center:y coordinate of the circle center.
- radius: radius size.
- color: color parameter. Valid values:
Value Description
S1D13700 BLACK Black color.
S1D13700 WHITE White color.
Requires Glcd module needs to be initialized. See the S1D13700_Init routine.
Example S1D13700 Circle Fi11(120, 64, 110, S1D13700 WHITE)

S1D13700_Image

Prototype sub procedure S1D13700 Image (dim image as “const byte)
Returns Nothing.
Description | Displays bitmap on Glcd.
Parameters:
- image: image to be displayed. Bitmap array is located in code memory.
Note: Image dimension must match the display dimension.
Requires Glcd module needs to be initialized. See the S1D13700_Init routine.
Example S1D13700 Image (€image)
MikroElektronika

mikroBasic PRO for dsPIC30/33 and PIC24

S1D13700_Partiallmage

Prototype sub procedure S1D13700 PartialImage(dim x left, vy top, width, height,
picture width, picture height as word, dim image as “const byte)
Returns Nothing.
Description | Displays a partial area of the image on a desired location.
Parameters:
- x_left:x coordinate of the desired location (upper left coordinate).
- yv_top:y coordinate of the desired location (upper left coordinate).
- width: desired image width.
- height: desired image height.
- picture width: width of the original image.
-picture height: height of the original image.
- image: image to be displayed. Bitmap array is located in code memory.
Note: Image dimension must match the display dimension.
Requires Glcd module needs to be initialized. See the S1D13700_Init routine.
Example ‘ Draws a 10x15 part of the image starting from the upper left corner on the
coordinate (10,12). Original image size 1is 16x32.
S1D13700_ PartialImage (10, 12, 10, 15, 16, 32, @image)

337

mikoBasic PRO for dsPIC30/33 and PIC24

Flash Memory Library
This library provides routines for accessing microcontroller’s (internal) Flash memory.

On the dsPIC30/33 and PIC24, Flash memory is mapped to address space 3:2, which means that every 3 consecutive
bytes of Flash have 2 consecutive address locations available. That is why mikroE’s library allows data to be written to
flash in two ways: “regular” and “compact”. In the “regular” mode, which is used for word(16-bit) variables, the 3rd (un-
addressable) flash memory byte remains unused. In the “compact” mode, which can be used for 1 byte-sized variables/
arrays, all flash bytes are being used.

All dsPIC30/33 and PIC24 MCUs use the RTSP module to perform Read/Erase/Write operations on Flash memory.
This, together with the internal structure of the Flash, imposes certain rules to be followed when working with Flash
memory:

dsPIC30:

- Erasing can be done only in 32-instructions (64 addresses, 96 bytes) memory blocks. This means that the
block start address should be a multiply of 64 (i.e. have 6 lower bits set to zero).

- Data is read and written in 4-instructions (8 addresses, 12 bytes) blocks.This means that the block start
address should be a multiply of 8 (i.e. have 3 lower bits set to zero).

- On the dsPIC30s, 2 address locations are assigned on every 3 bytes of (flash) program memory. Due to
this specific and non-one-to-one address mapping, the mikroBasic PRO for dsPIC30/33 and PIC24 offers
two sets of Flash handling functions: “regular” and “compact”.

Using the “regular” set, the user can write one byte of data to a single address, which means that each
byte of written data has its own address, but on every 2 written bytes one byte of Flash memory remains
empty.

Using the “compact” set, every byte of Flash memory, including those non-addressable, is filled with data;
this method can only be used for data organized in bytes.

The “compact” functions have Compact as name suffix.

- For run-time FLASH read/write, the dsPIC30’s RTSP module is being used. It organizes data into rows
and panels. Each row contains write latches that can hold 4 instructions (12 bytes). The number of panels
varies from one dsPIC30 MCU model to another. Because of that, the flash write sequence has been split
into several operations (Write Init (), Write LoadLatch4 (), Write DoWrite ()),in orderto
be usable on all dsPICs.

PIC24 and dsPIC33:

- Erasing can be done only in 512-instructions (1024 addresses, 1536 bytes) memory blocks, which means
that the block start address should be a multiply of 1024 (i.e. have 10 lower bits set to zero).

- Data is read and written in 64-instructions (128 addresses, 192 bytes) blocks.This means that the block
start address should be a multiply of 128 (i.e. have 7 lower bits set to zero).

- On the dsPIC33 and PIC24s, 2 address locations are assigned on every 3 bytes of (flash) program
memory. Due to this specific and non-one-to-one address mapping, the mikroBasic PRO for dsPIC30/33
and PIC24 offers two sets of Flash handling functions: “regular” and “compact”.

Using the “regular” set, the user can write one byte of data to a single address, which means that each
byte of written data has its own address, but on every 2 written bytes one byte of Flash memory remains
empty.

Using the “compact” set, every byte of Flash memory, including those non-addressable, is filled with data;
this method can only be used for data organized in bytes.

The “compact” functions have Compact as name suffix.

MikroElektronika 338

mikroBasic PRO for dsPIC30/33 and PIC24

24F04KA201 and 24F16KA102 Family Specifics:

- These MCU’s have their Flash memory organized into memory blocks of 32 instructions (96 bytes), unlike
other PIC24 devices.

- Erasing can be done only in 32-instructions (64 addresses, 96 bytes) memory blocks, which means that
the block start address should be a multiply of 64 (i.e. have 6 lower bits set to zero).

- Data is read and written in 32-instructions (64 addresses, 96 bytes) blocks. This means that the block start
address should be a multiply of 64 (i.e. have 6 lower bits set to zero).

- Unlike other PIC24 devices, writing or erasing one block of data (32 instructions), is followed by erasing the
memory block of the same size (32 instructions).

Library Routines

dsPIC30 Functions
- FLASH_Erase32

- FLASH_Write_Block

- FLASH_Write_Compact

- FLASH_Write_Init

- FLASH_Write_Loadlatch4

- FLASH_Write_Loadlatch4_Compact
- FLASH_Write_DoWrite

- FLASH_Read4
- FLASH_Read4_Compact

PIC24 and dsPIC33 Functions

- FLASH_Erase
- FLASH_Write
- FLASH_Write_Compact
- FLASH_Read
- FLASH_Read_Compact

mikoBasic PRO for dsPIC30/33 and PIC24

dsPIC30 Functions

FLASH_ Erase32

Prototype sub procedure FLASH Erase32(dim flash address as longint)
Description | Erases one block (32 instructions, 64 addresses, 96 bytes)from the program FLASH memory.
Parameters | - address: starting address of the FLASH memory block
Returns Nothing.
Requires Nothing.
Example ' erase the 32-instruction block, starting from address 0x006000
FLASH Erase32(0x006000)
Notes The user should take care about the address alignment (see the explanation at the beginning of this

page).

FLASH_Write Block

Prototype

sub procedure FLASH Write Block(dim flash address as 1longint,

address as word)

dim data

Description

Fills one writeable block of Flash memory (4 instructions, 8 addresses, 12 bytes) in the “regular” mode.
Addresses and data are being mapped 1-on-1. This also means that 3rd byte of each program location
remains unused.

Parameters

- flash address: starting address of the FLASH memory block
- data address: data to be written

Returns

Nothing.

Requires

The block to be written to must be erased first, either from the user code (through the RTSP), or during
the programming of MCU. Please note that block size that is to be erased is different from the one that
can be written with this function!

Example

dim flash address as longint
cArr as string[4]
ptr data as word

flash address = 0x006000

cArr = “ABCD”

ptr data = QcArr

FLASH Write Block (flash address, ptr data)

Notes

The user should take care about the address alignment (see the explanation at the beginning of this
page).

340

mikroBasic PRO for dsPIC30/33 and PIC24

FLASH_Write_ Compact

Prototype

sub procedure FLASH Write Compact (dim flash address as longint,
address as word, dim bytes as word)

dim data

Description

Fills a portion of Flash memory using the dsPIC30 RTSP module, in the “compact” manner. In this way,
several blocks of RTSP’s latch can be written in one pass. One latch block contains 4 instructions (8
addresses, 12 bytes). Up to 8 latch blocks can be written in one round, resulting in a total of 8*12 = 96
bytes. This method uses all available bytes of the program FLASH memory, including those that are
not mapped to address space (every 3rd byte).

Parameters

- flash address: starting address of the FLASH memory block

- data address: data to be written

- bytes: number of bytes to be written. The amount of bytes to be written must be a multiply of 12,
since this is the size of the RTSP’s write latch(es).

Returns

Nothing.

Requires

The block to be written to must be erased first, either from the user code FLASH_Erase32, or during
the programming of MCU. Please note that block size that is to be erased is different from the one that
can be written with this function!

Example

dim flash address as longint
cArr as string([36]
ptr data as word

flash address = 0x006000
cArr = “mikroElektronikalZ2mikroElektronika34”
ptr data = QcArr

FLASH7Write7Compact(ﬂashiaddress, ptr data, 36)

Notes

The user should take care about the address alignment (see the explanation at the beginning of this
page).

FLASH_Write_Init

Prototype sub procedure FLASH Write Init (dim flash address as longint, dim data address
as word)

Description | Initializes RTSP for write-to-FLASH operation.

Parameters | - flash address: starting address of the FLASH memory block
- data address: data to be written

Returns Nothing.

Requires The block to be written to must be erased first, either from the user code FLASH_Erase32, or during
the programming of MCU. Please note that block size that is to be erased is different from the one that
can be written with this function!

Example const iArr as word[8] = (“m”, “i7”, “k”, “r”, “o”, “E”, “17, “e”)

dim ptr data as word
ptr data = QiArr
FLASH Write Init(0x006100, ptr data)
FLASH Write Loadlatch4 ()
FLASH Write Loadlatch4 ()
FLASH Write DoWrite ()

Notes The user should take care about the address alignment (see the explanation at the beginning of this

page).

341

mikoBasic PRO for dsPIC30/33 and PIC24

FLASH_Write Loadlatch4

Prototype sub procedure FLASH Write Loadlatchi ()

Description | Loads the current RTSP write latch with data (4 instructions, 8 addresses, 12 bytes). The data is filled
in the “regular” mode.

Parameters | None.

Returns Nothing.

Requires The block to be written to must be erased first, either from the user code FLASH_Erase32, or during
the programming of MCU. Please note that block size that is to be erased is different from the one that
can be written with this function!

This function is used as a part of the Flash write sequence, therefore the FLASH_Write_Init function
must be called before this one.

This function can be called several times before commiting the actual write-to-Flash operation FLASH_
Write_DoWrite. This depends on the organization of the RTSP module for the certain dsPIC30. Please
consult the Datasheet for particular dsPIC30 on this subject.

Example const iArr as word[8] = (“m”, “i”, “k”, “r”, “o”, “E”, “17, “e”)

dim ptr data as word
};T;J’fidata = @iArr
FLASH Write Init (0x006100, ptr data)
FLASH Write Loadlatch4 ()
FLASH Write Loadlatchi ()
FLASH Write DoWrite ()
Notes None.

MikroElektronika 342

mikroBasic PRO for dsPIC30/33 and PIC24

FLASH_Write_Loadlatch4_Compact

Prototype void FLASH Write Loadlatch4 Compact () ;

Description | Loads the current RTSP write latch with data (4 instructions, 8 addresses, 12 bytes). The data is filled
in the “compact” mode.

Parameters | None.

Returns Nothing.

Requires The block to be written to must be erased first, either from the user code FLASH_Erase32, or during
the programming of MCU. Please note that block size that is to be erased is different from the one that
can be written with this function!

This function is used as a part of the Flash write sequence, therefore the FLASH_Write Init function
must be called before this one.

This function can be called several times before committing actual write-to-Flash operation FLASH_
Write_DoWrite. This depends on the organization of the RTSP module for the certain dsPIC30. Please
consult the Datasheet for particular dsPIC30 on this subject.

N7 w2

Example const iArr as word[8] = (“m”, “i”, “k”, “r”, “o”, “E”, “17, “e”)
dim ptr data as word

ptr data = QiArr

FLASH Write Init (0x006100, ptr data)
FLASH Write Loadlatch4 Compact ()
FLASH Write Loadlatch4 Compact ()
FLASH Write DoWrite ()

Notes None.

343 MikroElektronika

mikoBasic PRO for dsPIC30/33 and PIC24

FLASH_Write_DoWrite

Prototype sub procedure FLASH Write DoWrite ()

Description | Commits the FLASH write operation.

Parameters | None.

Returns Nothing.

Requires The block to be written to must be erased first, either from the user code FLASH_Erase32, or during
the programming of MCU. Please note that block size that is to be erased is different from the one that
can be written with this function!

This function is used as a part of the Flash write sequence, therefore FLASH_Write Init and certain
number of FLASH_Write_Loadlatch4 or FLASH_Write_Loadlatch4_Compact function calls must be
made before this one.
This function is to be called once, at the and of the FLASH write sequence.
Example const iArr as word[8} — (\\mu’ “i”, “k”, “]f”, “O”, “E”, “l”, \\e//)
dim ptr data as word
ptr data = QiArr
FLASH Write Init(0x006100, ptr data)
FLASH Write Loadlatch4 ()
FLASH Write Loadlatch4 ()
FLASH Write DoWrite ()
Notes None.
FLASH_Read4

Prototype sub procedure FLASH Read4 (dim flash address as longint, dim write to as
word)

Description | Reads one latch row (4 instructions, 8 addresses) in the “regular” mode.

Parameters | - 2ddress: starting address of the FLASH memory block to be read
-write to: starting address of RAM buffer for storing read data

Returns Starting address of RAM buffer for storing read data.

Requires Nothing.

Exmnph dim flash address as longint

cArr as word[4]
ptr data as word
flash address = 0x006000
ptr data = @QcArr
FLASH Read4 (flash address, ptr data)

Notes The user should take care of the address alignment (see the explanation at the beginning of this

page).
MikroElektronika

344

mikroBasic PRO for dsPIC30/33 and PIC24

FLASH Read4 Compact

Prototype sub procedure FLASH Read4 Compact (dim flash address as longint, dim write to
as word)
Description | Reads one latch row (4 instructions, 8 addresses) in the “compact” mode.
Parameters | - address: starting address of the FLASH memory block to be read
-write to: starting address of RAM buffer for storing read data
Returns Starting address of RAM buffer for storing read data.
Requires Nothing.
Example dim flash address as longint
cArr as word[8]
ptr data as word
flash address = 0x006000
ptr data = Q@cArr
FLASH Read4 Compact (flash address, ptr data)
Notes The user should take care of the address alignment (see the explanation at the beginning of this

page).

PIC24 and dsPIC33 Functions

FLASH_Erase

Prototype sub procedure FLASH Erase (dim address as longint)
Description | Erases one block (512 instructions, 1024 addresses, 1536 bytes) from the program FLASH memory.
Parameters | - address: starting address of the FLASH memory block
Returns Nothing.
Requires Nothing.
Example ‘-—- erase the flash memory block, starting from address 0x006400
dim flash address as longint
ﬂééhiaddress = 0x006400
FLASH Erase (flash address)
Notes The user should take care about the address alignment (see the explanation at the beginning of this
page).

345

mikoBasic PRO for dsPIC30/33 and PIC24

FLASH_Write

Prototype

sub procedure FLASH Write(dim address as longint, dim byref data as

word[64])

Description

Fills one writeable block of Flash memory (64 instructions, 128 addresses, 192 bytes) in the “regular’
mode. Addresses and data are being mapped 1-on-1. This also means that 3rd byte of each program
location remains unused.

Parameters | - address: starting address of the FLASH memory block
- data :data to be written

Returns Nothing.

Requires The block to be written to must be erased first, either from the user code (through the RTSP), or during
the programming of MCU. Please note that block size that is to be erased is different from the one that
can be written with this function!

Example dim data_ as word[64] = {“m”, “i”, “k”, “r”, “o”, “E”, “17, “e”, “k”, “t”,
“K”, “O”, \\n//, \\i/!’ \\k//, \\a/!}

FLASH Write (0x006500, data)
Notes The user should take care about the address alignment (see the explanation at the beginning of this

page).

FLASH_Write_Compact

Prototype sub procedure FLASH Write Compact (dim address as longint, dim byref data
as byte[192])

Description | Fills a portion of Flash memory (64 instructions, 128 addresses, 192 bytes) using the dsPIC33 and
PIC24s RTSP (Run Time Self Programming) module, in the “compact” manner. This method uses all
available bytes of the program FLASH memory, including those that are not mapped to address space
(every 3rd byte).

Parameters | - address: starting address of the FLASH memory block
- data :data to be written

Returns Nothing.

Requires The block to be written to must be erased first, either from the user code (FLASH_Erase), or during
the programming of MCU. Please note that block size that is to be erased is different from the one that
can be written with this function!

Example dim data as string[192]
aééa = “supercalifragillisticexpialidotiousABCDEFGHIJKLMNOPRSTUVWXYZ1234”
FT‘ASHiwﬁ te Compact (0x006400, data)

Notes The user should take care of the address alignment (see the explanation at the beginning of this
page).

MikroElektronika

346

mikroBasic PRO for dsPIC30/33 and PIC24

FLASH_ Read

Prototype

sub procedure FLASH Read(dim address as 1longint, dim byref write to as

word[100], dim NoWords as word)
Description | Reads required number of words from the flash memory in the “regular” mode.
Parameters | - address: starting address of the FLASH memory block to be read

-write to: starting address of RAM buffer for storing read data

- NoWords: number of words to be read
Returns Address of RAM buffer for storing read data.
Requires
Example dim Buffer as word[10]

start address as longint

FLASH Write (0x006500, data)

start address = 0x6500

FLASH Read(start address, Buffer, 10)
Notes The user should take care of the address alignment (see the explanation at the beginning of this

page).

FLASH_Read_ Compact

Prototype sub procedure FLASH Read Compact (dim address as longint, dim byref write to
as byte[100], dim NoBytes as word)
Description | Reads required number of bytes from the flash memory in the “compact” mode.
Parameters | - address: starting address of the FLASH memory block to be read
-write to: starting address of RAM buffer for storing read data
- NoBytes: number of bytes to be read
Returns Address of RAM buffer for storing read data.
Requires
Example dim Buffer as byte[1l0]
start address as longint
FLASH Write (0x006500, data)
start address = 0x6500
FLASH Read(start address, Buffer, 10)
Notes The user should take care of the address alignment (see the explanation at the beginning of this
page).

Library Example

In this example written for dsPIC30F4013, various read/write tecniques to/from the on-chip FLASH memory are shown.
Flash memory is mapped to address space 3:2, meaning every 3 consecutive bytes of Flash have 2 consecutive
address locations available.

That is why mikroE’s library allows data to be written to Flash in two ways: ‘regular’ and ‘compact’. In ‘regular’ mode,
which is used for variables that are size of 2 bytes and more, the 3rd (un-addressable) byte remains unused.

In ‘compact’ mode, which can be used for 1 byte-sized variables/arrays, all bytes of flash are being used.

341

mikoBasic PRO for dsPIC30/33 and PIC24

Copy Code To Clipboard

program Flash Test

dim WriteWordArr as word[8]
WriteByteArr as byte[32]
ReadByteArr as byte[40]
RealongwordArr as word|[20]

pw as “word

pb as “byte

i as word

temp byte as byte

main:

‘ Initialize arrays

WriteWordArr[0] = “*” WriteWordArr[l] = “m” WriteWordArr[2] = “i” WriteWordArr[3] = “k”
WriteWordArr[4] = “r” WriteWordArr[5] = “o” WriteWordArr[6] = “E” WriteWordArr([7] = “*”
WriteByteArr[0] = “m” WriteByteArr[l] = “1i” WriteByteArr([2] = “k” WriteByteArr[3] = “r”
WriteByteArr[4] = “o” WriteByteArr[5] = “E” WriteByteArr([6] = “1” WriteByteArr[7] = “e”
WriteByteArr[8] = “k” WriteByteArr[9] = “t” WriteByteArr([10] = “r” WriteByteArr[1l1l] = “o”
WriteByteArr[12] = “n” WriteByteArr[13] = “i” WriteByteArr([14] = “k” WriteByteArr[15] = “a”
WriteByteArr[1l6] = “ “ WriteByteArr[l7] = “F” WriteByteArr([18] = “1” WriteByteArr[19] = “a”
WriteByteArr[20] = “s” WriteByteArr[21] = “h” WriteByteArr([22] = “ “ WriteByteArr[23] = “e”
WriteByteArr[24] = “x” WriteByteArr[25] “a” WriteByteArr[26] = “m” WriteByteArr[27] = “p”
WriteByteArr[28] = “1” WriteByteArr[29] = “e” WriteByteArr[30] = “.” WriteByteArr[31] =0

pb = @WriteByteArr
‘-—— erase the block first
FLASH Erase32(0x006000)

pb = @WriteByteArr[0]

FLASH Write Compact (0x006000, pb, 36)
(*

This is what FLASH Write Compact () does “beneath the hood”
*

FLASH Write Init (0x006000, pvl)

FLASH Write Loadlatch4 Compact ()
FLASH Write Loadlatch4 Compact ()
FLASH Write Loadlatch4 Compact ()
FLASH_Write_DoWrite ()

*)

'‘-—- read compact format
pb = @ReadByteArr
FLASH Read4 Compact (0x006000, pb)
pb = pb + 12
FLASH Read4 Compact (0x006008, pb)
pb = pb + 12
FLASH Read4 Compact (0x006010, pb)
pb = pb + 12
pb® =0 ‘termination

UART1 Tnit (9600)
UART1 Write (10)
UART1 Write(13)

MikroElektronika 348

mikroBasic PRO for dsPIC30/33 and PIC24

UART1 Write Text (“Start”)
UART1 Write (10)
UART1 Write (13)
i=0
while (ReadByteArr[i])
temp byte = ReadByteArr[i]
UART1 Write (temp byte)
Inc (1)
wend

'‘-—- now for some non-compact flash-write
pw = @WriteWordArr

'‘--- erase the block first

FLASH Erase32(0x006100)

FLASH Write Init (0x006100, pw)

FLASH Write Loadlatch4 ()

FLASH Write Loadlatchi ()

FLASH_Wri te_DoWri te ()

'‘-—— read non-compact format
pw = @RealongwordArr[0]
FLASH Read4 (0x006100, pw)

pw = pw + 4

FLASH Read4 (0x006108, pw)

pw = pw + 4

pw” = 0 ‘termination

‘--- show what has been written

UART1 Write (10)

UART1 Write (13)

i=0

while (RealongwordArr [i]<>0)
temp byte = RealongwordArr[i]
UART1 Write (temp byte)
i=1+1

wend

end.

Graphic Lcd Library

mikroBasic PRO for dsPIC30/33 and PIC24 provides a library for operating Graphic Lcd 128x64 (with commonly used
Samsung KS108/KS107 controller).

For creating a custom set of Glcd images use Glcd Bitmap Editor Tool.

Library Dependency Tree

[Glcd]—>[Glcd_Fonts]

3419 MikroElektronika

mikoBasic PRO for dsPIC30/33 and PIC24

External dependencies of Graphic Lcd Library

The following variables must be defined in all

external

Direction of the Reset pin.

TRISF5 bit

. - - . Description: Example:
projects using Graphic Lcd Library: P P
dim GLCD DO as sbit sfr external Data 0 line. dim GLCD DO as sbit at RBO_bit
dim GLCD D1 as sbit sfr external Data 1 line. dim GLCD D1 as sbit at RB1 bit
dim GLCD D2 as sbit sfr external Data 2 line. dim GLCD D2 as sbit at RB2 bit
dim GLCD D3 as sbit sfr external Data 3 line. dim GLCD D3 as sbit at RB3 bit
dim GLCD D4 as sbit sfr external Data 4 line. dim GLCD D4 as sbit at RDO bit
dim GLCD D5 as sbit sfr external Data 5 line. dim GLCD D5 as sbit at RD1_bit
dim GLCD D6 as sbit sfr external Data 6 line. dim GLCD D6 as sbit at RD2 bit
dim GLCD D7 as sbit sfr external Data 7 line. dim GLCD D7 as sbit at RD3 bit
dim GLCD CS1 as sbit sfr external Chip Select 1 line. dim GLCD CS1 as sbit at LATB4 bit
dim GLCD CS2 as sbit sfr external Chip Select 2 line. dim GLCD CS2 as sbit at LATBS bit
dim GLCD RS as sbit sfr external Register select line. dim GLCD RS as sbit at LATFO bit
dim GLCD RW as sbit sfr external Read/Write line. dim GLCD RW as sbit at LATF1l bit
dim GLCD EN as sbit sfr external Enable line. dim GLCD EN as sbit at LATF4 bit
dim GLCD RST as sbit sfr external Reset line. dim GLCD RST as sbit at RB5 bit
dim GLCD DO Direction as sbit sfr Direction of the Data 0 pin dim GLCD DO Direction as sbit at
external pin. TRISBO bit
dim GLCD D1 Direction as sbit sfr Direction of the Data 1 pin dim GLCD D1 Direction as sbit at
external pin. TRISB1 bit
dim GLCD D2 Direction as sbit| dim GLCD D2 Direction as sbit at

— Direction of the Data 2 pin. -

sfr external TRISF2 bit
dim GLCD D3 Direction as sbit sfr Direction of the Data 3 pin dim GLCD D3 Direction as sbit at
external ectionotine Lata s pin. TRISF3 bit
dim GLCD D4 Direction as sbit sfr Direction of the Data 4 pin dim GLCD D4 Direction as sbit at
external pin. TRISDO bit
dim GLCD_D5 Direction as sbit sfr Direction of the Data 5 pin dim GLCD_D5 Direction as sbit at
external pin. TRISD1 bit
dim GLCD D6 Direction as sbit sfr Direction of the Data 6 pin dim GLCD D6 Direction as sbit at
external pin. TRISD2 bit
dim GLCD D7 Direction as sbit sfr Direction of the Data 7 pin dim GLCD D7 Direction as sbit at
external pin. TRISD3 bit
dim GLCD Csl Direction as sbit sfr | Direction of the Chip Select | dim GLCD CS1 Direction as sbit at
external 1 pin. TRISB4 bit
dim GLCD CS2 Direction as sbit sfr | Direction of the Chip Select | dim GLCD CS2 Direction as sbit at
external 2 pin. TRISB5 bit
dim GLCD_RS Direction as sbit sfr | Direction of the Register | dim GLCD RS Direction as sbit at
external select pin. TRISFO bit
dim GLCD RW Direction as sbit sfr | Direction of the Read/Write | dim GLCD RW Direction as sbit at
external pin. TRISF1 bit
dim GLCD EN Direction as sbit sfr Direction of the Enable pin dim GLCD EN Direction as sbit at
external rect pin. TRISF4 bit
dim GLCD RST Direction as sbit sfr dim GLCD RST Direction as sbit at

mikroBasic PRO for dsPIC30/33 and PIC24

Library Routines

Basic routines:

- Gled_Init

- Glcd_Set_Side
- Gled_Set X

- Glcd_Set_Page

- Glcd_Read_Data
- Glcd_Write_Data

Advanced routines:

- Gled_Fill

- Gled_Dot

- Gled_Line

- Gled_V_Line

- Gled_H_Line

- Glcd_Rectangle

- Glcd_Rectangle_Round_Edges
- Glcd_Rectangle_Round_Edges_Fill

- Glcd_Box

- Glcd_Circle

- Glcd_Circle_Fill
- Glcd_Set_Font

- Glcd_Write_Char
- Glcd_Write_Text

- Gled_Image
- Glcd_Partiallmage

Gled_Init

Prototype

sub procedure Glcd Init()

Description

Initializes the Glcd module. Each of the control lines are both port and pin configurable, while data
lines must be on a single port (pins <0:7>).

Parameters

None.

Returns

Nothing.

Requires

Global variables:

- GLCD_DO

:Datapin0
- GLCD_D1:
- GLCD D2:
- GLCD_D3:
- GLCD_D4:
- GLCD_D5:
- GLCD_D6:
- GLCD_D7:
- GLCD Cs1 : Chip select 1 signal pin
- GLCD_Cs2 : Chip select 2 signal pin
- GLCD_ RS : Register select signal pin
- GLCD_ RW : Read/Write Signal pin

Data pin 1
Data pin 2
Data pin 3
Data pin 4
Data pin 5
Data pin 6
Data pin 7

391

mikoBasic PRO for dsPIC30/33 and PIC24

Requires

- GLCD_ EN : Enable signal pin

- GLCD_ RST : Reset signal pin

- GLCD DO Direction : Direction of the Data pin 0

- GLCD D1 Direction : Direction of the Data pin 1

- GLCD D2 Direction : Direction of the Data pin 2

- GLCD D3 Direction : Direction of the Data pin 3

- GLCD D4 Direction : Direction of the Data pin 4

- GLCD D5 Direction : Direction of the Data pin 5

- GLCD D6 Direction : Direction of the Data pin 6

- GLCD D7 Direction : Direction of the Data pin 7

- GLCD Cs1 Direction : Direction of the Chip select 1 pin

- GLCD Cs2 Direction : Direction of the Chip select 2 pin

- GLCD RS Direction : Direction of the Register select signal pin
- GLCD RW Direction : Direction of the Read/Write signal pin
- GLCD EN Direction : Direction of the Enable signal pin

- GLCD RST Direction : Direction of the Reset signal pin

must be defined before using this function.

Example

' Glcd module connections

dim GLCD D7 as sbit at RD3 bit
GLCD D6 as sbit at RDZ bit
GLCD D5 as sbit at RD1 bit
GLCD D4 as sbit at RDO bit
GLCD D3 as sbit at RB3 bit
GLCD D2 as sbit at RB2 bit
GLCD D1 as sbit at RB1 bit
GLCD DO as sbit at RBO bit
GLCD D7 Direction as sbit at TRISD3 bit
GLCD D6 Direction as sbit at TRISD2Z bit
GLCD D5 Direction as sbit at TRISD1 bit
GLCD D4 Direction as sbit at TRISDO bit
GLCD D3 Direction as sbit at TRISB3 bit
GLCD D2 Direction as sbit at TRISB2Z bit
GLCD D1 Direction as sbit at TRISB1 bit
GLCD DO Direction as sbit at TRISBO bit

dim GLCD CS1 as sbit at LATB4 bit
GLCD CS2 as sbit at LATBS bit
GLCD RS as sbit at LATFO bit
GLCD RW as sbit at LATF1 bit
GLCD EN as sbit at LATF4 bit
GLCD RST as sbit at LATF5 bit

dim GLCD CS1 Direction as sbit at TRISB4 bit
GLCD CS2 Direction as sbit at TRISBS5 bit
GLCD RS Direction as sbit at TRISFO bit
GLCD RW Direction as sbit at TRISF1 bit
GLCD_EN Direction as sbit at TRISF4 bit
GLCD RST Direction as sbit at TRISF5 bit

' End Glcd module connections

Glcd Init()

Notes

None.

392

mikroBasic PRO for dsPIC30/33 and PIC24

Glcd_Set_Side

Prototype

sub procedure Glcd Set Side(dim x pos as byte)

Description

Selects Glcd side. Refer to the Glcd datasheet for detailed explanation.

Parameters

- x_pos: Specifies position on x-axis of the Glcd. Valid values: 0..127. Values from 0 to 63 specify the

left side, values from 64 to 127 specify the right side of the Glcd.

Returns Nothing.

Requires Glcd needs to be initialized, see Glcd_Init routine.

Example The following two lines are equivalent, and both of them select the left side of Glcd:
Glcd Select Side(0)
Glcd Select Side(10)

Notes For side, x axis and page layout explanation see schematic at the bottom of this page.

Glcd_Set_X

Prototype sub procedure Glcd Set X(dim x pos as byte)

Description | Sets x-axis position to = pos dots from the left border of Glcd within the selected side.

Parameters | - x pos: position on x-axis. Valid values: 0..63

Returns Nothing.

Requires Glcd needs to be initialized, see Glcd_Init routine.

Example Glcd Set X (25)

Notes For side, x axis and page layout explanation see schematic at the bottom of this page.

Glcd_Set_Page

Prototype sub procedure Glcd Set Page (dim page as byte)

Description | Selects page of the Glcd.

Parameters | - page: page number. Valid values: 0..7

Returns Nothing.

Requires Glcd needs to be initialized, see Glcd_Init routine.

Example Glcd Set Page (5)

Notes For side, x axis and page layout explanation see schematic at the bottom of this page.

mikoBasic PRO for dsPIC30/33 and PIC24

Glcd_Read Data

Prototype sub function Glcd Read Data () as byte
Description | Reads data from from the current location of Glcd memory and moves to the next location.
Parameters | None.
Returns One byte from Glcd memory, formatted as a word (16-bit).
Requires Glcd needs to be initialized, see Glcd_Init routine.
Glcd side, x-axis position and page should be set first. See functions Glcd_Set_Side, Glcd_Set_X,
and Glcd_Set_Page.
Example dim data as byte
GI (ijdiReadiData ()
data = Glcd Read Data()
Notes This routine needs to be called twice; After the first call, data is placed in the buffer register. After the

second call, data is passed from the buffer register to data lines.

Glcd_Write_Data

Prototype sub procedure Glcd Write Data(dim data as byte)

Returns Nothing.

Description | Writes one byte to the current location in Glcd memory and moves to the next location.
Parameters:
- data :data to be written

Requires Glcd needs to be initialized, see Glcd_Init routine.
Glcd side, x-axis position and page should be set first. See functions Glcd_Set_Side, Glcd_Set_X,
and Glcd_Set_Page.

Example dim data_ as byte
éi(ijdjﬂritciData (data)

MikroElektronika

394

mikroBasic PRO for dsPIC30/33 and PIC24

Gled_Fill
Prototype sub procedure Glcd Fill (dim pattern as byte)
Description | Fills Glcd memory with the byte pattern.
To clear the Glcd screen, use Glcd Fill (0).
To fill the screen completely, use G1lcd Fill (0xFF).
Parameters | - pattern: byte to fill Glcd memory with.
Returns Nothing.
Requires Glcd needs to be initialized, see Glcd_Init routine.
Example Glcd Fill(0) ‘' Clear screen
Notes None.
Glcd_Dot
Prototype sub procedure Glcd Dot (dim x pos, y pos, color as byte)
Description | Draws a dot on Glcd at coordinates (x pos, vy pos).
Parameters | - x pos: x position. Valid values: 0..127
-y _pos:y position. Valid values: 0..63
- color: color parameter. Valid values: 0..2
The parameter color determines a dot state: 0 clears dot, 1 puts a dot, and 2 inverts dot state.
Returns Nothing.
Requires Glcd needs to be initialized, see Glcd_Init routine.
Example ' Invert the dot in the upper left corner
Glcd Dot (0, 0, 2)
Notes For x and y axis layout explanation see schematic at the bottom of this page.
Glcd_Line
Prototype sub procedure Glcd Line(dim x start, y start, x end, y end as integer, dim
color as byte)
Description | Draws a line on Glcd.
Parameters | - x start: x coordinate of the line start. Valid values: 0..127
-y start:y coordinate of the line start. Valid values: 0..63
- x_end: x coordinate of the line end. Valid values: 0..127
- y_end:y coordinate of the line end. Valid values: 0..63
- color: color parameter. Valid values: 0..2
The parameter color determines the line color: 0 white, 1 black, and 2 inverts each dot.
Returns Nothing.
Requires Glcd needs to be initialized, see Glcd_Init routine.
Example ‘ Draw a line between dots (0,0) and (20,30)
Glcd Line(0, 0, 20, 30, 1)
Notes None.

mikoBasic PRO for dsPIC30/33 and PIC24

Gled _V Line

Prototype

sub procedure Glcd V Line(dim y start, y end, x pos, color as byte)

Description

Draws a vertical line on Glcd.

Parameters

-y _start:y coordinate of the line start. Valid values: 0..63
- y_end:y coordinate of the line end. Valid values: 0..63

- x_pos: x coordinate of vertical line. Valid values: 0..127

- color: color parameter. Valid values: 0..2

The parameter color determines the line color: 0 white, 1 black, and 2 inverts each dot.

Returns Nothing.
Requires Glcd needs to be initialized, see Glcd_Init routine.
Example ' Draw a vertical line between dots (10,5) and (10,25)
Glcd V Line(5, 25, 10, 1)
Notes None.
Glcd_H Line
Prototype sub procedure Glcd H Line(dim x start, x end, y pos, color as byte)
Description | Draws a horizontal line on Glcd.
Parameters |- x start: x coordinate of the line start. Valid values: 0..127
- x_end: x coordinate of the line end. Valid values: 0..127
- v_pos:y coordinate of horizontal line. Valid values: 0..63
- color: color parameter. Valid values: 0..2
The parameter color determines the line color: O white, 1 black, and 2 inverts each dot.
Returns Nothing.
Requires Glcd needs to be initialized, see Glcd_Init routine.
Example ‘ Draw a horizontal line between dots (10,20) and (50,20)
Gled H Line (10, 50, 20, 1)
Notes None.
MikroElektronika

mikroBasic PRO for dsPIC30/33 and PIC24

Glcd_Rectangle

Prototype sub procedure Glcd Rectangle(dim x upper left, vy upper left, x bottom
right, y bottom right, color as byte)
Description | Draws a rectangle on Glcd.
Parameters | - x upper left:x coordinate of the upper left rectangle corner. Valid values: 0..127
-y upper left:y coordinate of the upper left rectangle corner. Valid values: 0..63
-x bottom right:x coordinate of the lower right rectangle corner. Valid values: 0..127
-y bottom right:y coordinate of the lower right rectangle corner. Valid values: 0..63
- color: color parameter. Valid values: 0..2
The parameter color determines the color of the rectangle border: 0 white, 1 black, and 2 inverts
each dot.
Returns Nothing.
Requires Glcd needs to be initialized, see Glcd_Init routine.
Example ‘' Draw a rectangle between dots (5,5) and (40,40)
Glcd Rectangle(5, 5, 40, 40, 1)
Notes None.

Glcd_Rectangle_Round_Edges

Prototype sub procedure Glcd Rectangle Round Edges(dim x upper left as byte, dim y
upper left as byte, dim x bottom right as byte, dim y bottom right as byte,
dim radius as byte, dim color as byte)

Description | Draws a rounded edge rectangle on Glcd.

Parameters | - x upper left:x coordinate of the upper left rectangle corner. Valid values: 0..127
-y upper left:y coordinate of the upper left rectangle corner. Valid values: 0..63
- x_bottom right:x coordinate of the lower right rectangle corner. Valid values: 0..127
-y bottom right:y coordinate of the lower right rectangle corner. Valid values: 0..63
- round radius: radius of the rounded edge.
- color: color parameter. Valid values: 0..2
The parameter color determines the color of the rectangle border: 0 white, 1 black, and 2 inverts
each dot.

Returns Nothing.

Requires Glcd needs to be initialized, see Glcd_Init routine.

Example ' Draw a rounded edge rectangle between dots (5,5) and (40,40) with the
radius of 12
Glcd Rectangle Round Edges (5, 5, 40, 40, 12, 1)

Notes None.

391

mikoBasic PRO for dsPIC30/33 and PIC24

Glcd_Rectangle_Round_Edges_Fill

Prototype sub procedure Glcd Rectangle Round Edges Fill (dim x upper left as byte, dim
y upper left as byte, dim x bottom right as byte, dim y bottom right as
byte, dim radius as byte, dim color as byte)

Description | Draws a filled rounded edge rectangle on Glcd with color.

Parameters | - x upper left:x coordinate of the upper left rectangle corner. Valid values: 0..127
-y upper left:y coordinate of the upper left rectangle corner. Valid values: 0..63
-x bottom right:x coordinate of the lower right rectangle corner. Valid values: 0..127
-y bottom right:y coordinate of the lower right rectangle corner. Valid values: 0..63
- round radius: radius of the rounded edge
- color: color parameter. Valid values: 0..2
The parameter color determines the color of the rectangle border: 0 white, 1 black, and 2 inverts
each dot.

Returns Nothing.

Requires Glcd needs to be initialized, see Glcd_Init routine.

Example ‘' Draws a filled rounded edge rectangle between dots (5,5) and (40,40) with
the radius of 12
Glcd Rectangle Round E