Evaluation Board User Guide
UG-402

One Technology Way • P.O. Box 9106 • Norwood, MA 02062-9106, U.S.A. • Tel: 781.329.4700 • Fax: 781.461.3113 • www.analog.com

iCoupler ADuM3070 Isolated Switch Regulator With Integrated Feedback Evaluation Board

FEATURES

2 independent ADuM3070 circuits including 2.5 kV rms isolated dc-to-dc converters
Single supply
5 V in to 5 V out (regulated)
Reconfigurable to 5 V in to 3.3 V out or 3.3 V in to 3.3 V out
Double supply
5 V in to 15 V out (regulated) and 7.5 V out (unregulated) Reconfigurable to 5 V in to 12 V out (regulated) and 6 V out (unregulated)
Footprints for Coilcraft and Halo transformer options
Multiple switching frequency options

SUPPORTED iCoupler MODELS

ADuM3070

GENERAL DESCRIPTION

The EVAL-ADuM3070EBZ demonstrates two separate applications for the ADuM3070 isolated switch regulator with integrated feedback. It has two independent power supply circuits: a double supply and a single supply. The switching frequency can be set from 200 kHz to 1000 kHz . The board supports a variety of I/O configurations and multiple transformer options. It is equipped with two ADuM 3070 isolators.

Figure 1. Double Supply (Top) and Single Supply (Bottom) Configurations

TABLE OF CONTENTS

Features .. 1
Supported iCoupler Models .. 1
General Description .. 1
ADuM3070 Evaluation Board ... 1
Revision History ... 2
Single Supply .. 3
Terminals .. 3
Transformer Selection.. 3
Switching Frequency Options... 3
Other Input and Isolated Output Supply Options 4

Schematic.. 5
Double Supply... 6
Terminals ... 6
Transformer Selection .. 7
Switching Frequency Options... 7
Other Secondary Isolated Supply Configurations 8
Schematic... 8
Evaluation Board Layout .. 9
Ordering Information.. 10
Bill of Materials.. 10

REVISION HISTORY

5/12—Revision 0: Initial Version

SINGLE SUPPLY

Two independent and isolated circuits comprise the ADuM3070 evaluation board. The lower half of the board, shown in Figure 2, is for a single power supply configuration (see the ADuM3070 data sheet for applications information about the ADuM3070 in this configuration).

Figure 2. Single Supply Configuration
The single supply is configured as a 5 V secondary isolated supply with a 5 V primary input supply, which can provide up to 2.5 W of regulated, isolated power. It can be reconfigured for a 3.3 V secondary isolated supply with a 5 V or 3.3 V primary input supply (see the Other Input and Isolated Output Supply Options section). Figure 9 shows the single supply schematic.

TERMINALS

The single supply has terminal blocks on Side 1 (the primary/ power supply input side) and Side 2 (the secondary/power supply output side). A 4.3 mm isolation barrier separates Side 1 and Side 2. Figure 3 shows these terminal locations.
Table 1 summarizes the functions of the terminal connections. They are described in detail in the Input Power Connections and Output Power Connections sections.

Figure 3. Single Supply Terminals

Input Power Connections

Connect 5 V to P1, labeled +5 V IN (or +3.3 V for a 3.3 V primary input supply with a 3.3 V secondary isolated supply). Connect the negative supply to P 2 , labeled GND (GND1 on the schematic). These are the only off-board connections required for the single supply to function.
$V_{\text {DDI }}$ supplies the voltage to the transformer primary and to the ADuM3070 supply voltage, VDDA (see the ADuM3070 data sheet for additional information about the $V_{D D A}$ pin function). $V_{D D 1}$ and $V_{\text {DDA }}$ are bypassed by a $47 \mu \mathrm{~F}$ ceramic capacitor (C1) and a $0.1 \mu \mathrm{~F}$ local bypass capacitor (C2) located close to the ADuM3070. R7, R8, C5, and C6 are provided for an optional and unpopulated snubber, which can be used to reduce radiated emissions.
Power is transferred to Side 2 by a regulated push-pull converter comprising the ADuM3070 (U1), an external transformer (T1 or T2), and other components (see the ADuM3070 data sheet for an explanation of this circuit functionality).

Output Power Connections

An output load can be connected to P 3 (labeled $+5 \mathrm{~V} / 3.3 \mathrm{~V}$ on the silkscreen and not labeled on the schematic), which is the isolated, regulated 5 V output supply. Connect the return of the load to P4, which is the Side 2 ground reference. P4 is labeled GND ISO on the silkscreen and GND2 on the schematic. This supply can provide up to 500 mA in the default 5 V primary input supply, 5 V secondary isolated supply configuration. Figure 5 through Figure 8 in this user guide show how the power supply's efficiency varies with load current, switching frequency, and temperature.

Table 1. Single Supply Terminal Function Descriptions

Terminal	Pin	Label	Description
P1	1	+5 V IN	Side 15 V primary input supply
P2	1	GND	Side 1 ground reference
P3	1	$+5 \mathrm{~V} / 3.3 \mathrm{~V}$	Side 25 V secondary isolated supply
P4	1	GND ISO	Side 2 ground reference

Care must be taken to avoid driving the $\mathrm{V}_{\mathrm{DD} 2}$ output with an external voltage because this can result in permanent damage to the ADuM3070.

TRANSFORMER SELECTION

The EVAL-ADuM3070EBZ supports multiple transformer options. The single supply is equipped with a Halo TGSAD260V6LF (T1) or a Coilcraft JA4631-BL (T2) 1:2 turns ratio transformer. The Coilcraft footprint is offset to the left of the Halo footprint. Figure 5 and Figure 7 show the efficiency curves for the single supply operating with a Coilcraft and a Halo transformer, respectively.

SWITCHING FREQUENCY OPTIONS

The resistor connected from the ADuM3070 oscillator control pin (OC) to ground sets the single supply switching frequency. Figure 4 shows the relationship between this resistance and the converter switching frequency. The EVAL-ADuM3070EBZ can be configured with $0 \Omega, 0805$ resistors to four different preset switching frequencies. Short-circuiting R10 sets R1 ($300 \mathrm{k} \Omega$) and R2 ($150 \mathrm{k} \Omega$) in parallel, and short-circuiting R11 sets R1 and R3 ($100 \mathrm{k} \Omega$) in parallel. Table 2 lists the switching frequencies that can be selected by short- or open-circuiting R10 and R11.

The user can select a different switching frequency by removing R10 and R11 and then choosing R1 based on Figure 4. The board is configured for the 500 kHz setting by default. Figure 5 and Figure 7 show how the switching frequency affects the supply's efficiency with either transformer installed. Figure 6 shows how the efficiency curve varies over temperature with a 500 kHz switching frequency.

Table 2. Switching Frequency Selection

Figure 4. Switching Frequency vs. Roc Resistance

OTHER INPUT AND ISOLATED OUTPUT SUPPLY OPTIONS

The single supply can be configured to have a 3.3 V secondary isolated supply with a 3.3 V or 5 V primary input supply. Shortcircuiting R4 by soldering a $0 \Omega, 0805$ resistor to R9 sets the output supply for 3.3 V . The voltage at the feedback node (the FB pin of the ADuM3070) should be the desired output voltage divided to approximately 1.25 V . Having R9 open-circuited sets the secondary isolated supply to 5 V , and having it short-circuited sets the supply to 3.3 V . See the ADuM3070 data sheet for more details on setting the secondary isolated output supply voltage. Figure 8 shows how the single supply efficiency curve changes when it is reconfigured for either of these supply options.

Figure 5.5 V In to 5 V Out Efficiency with 1:2 Coilcraft Transformer at Various Switching Frequencies

Figure 6.5 V In to 5 V Out Efficiency with 1:2 Coilcraft Transformer at 500 kHz over Temperature

Figure 7. 5 V In to 5 V Out Efficiency with 1:2 Halo Transformer at Various Switching Frequencies

Evaluation Board User Guide

Figure 8. Single Supply Efficiency for Various Output Configurations with 1:2 Coilcraft Transformer at 500 kHz

SCHEMATIC

Notes:
All resistors are 8805 packages.
All . 1uF are 0603 packages.
All 22uF and 47 UF are 1210 packages.
The diode footprints are for SOD-123 packages.
All diodes are MBR0540 Schottky diodes.
All inductors can be either 1212 or 1210s
DNP = Do Not Populate $/$ Not in BOM

DOUBLE SUPPLY

The second power supply implemented with the ADuM3070 on this evaluation board is a double supply. This circuit, which is shown in Figure 10, is located on the top half of the board. The ADuM3070 data sheet also describes the ADuM3070 in this configuration. Figure 17 shows the schematic.

Figure 10. Double Supply Configuration
In its default configuration, the double supply provides a regulated 15 V output and an unregulated 7.5 V output, which are isolated from the 5 V primary input supply. The double supply is capable of delivering up to 140 mA to external loads. The isolated data channels on Side 2 load the secondary isolated supply and reduce the total available current. The double supply can be reconfigured as 12 V (regulated) and 6 V (unregulated) secondary isolated supplies or as positive and negative supplies. See the Other Secondary Isolated Supply Configurations section for more details.

Figure 11. Double Supply Terminals

TERMINALS

The double supply has terminal blocks on Side 1 (the primary/ power supply input side) and Side 2 (the secondary/power supply output side). A 4.3 mm isolation barrier separates Side 1 and Side 2 . Figure 11 shows these terminals. Table 3 summarizes the functions of the terminal connections. They are described in detail in the Input Power Connections and Output Power Connections sections.

Input Power Connections

Connect 5 V to P5, labeled +5 V IN. Connect the supply negative to P6, labeled GND (GND3 on the schematic). These are the only off-board connections required for the double supply to function.
$V_{\text {DD2 }}$ supplies the voltage to the transformer primary and to the ADuM3070 supply voltage, VDDA (see the ADuM3070 data sheet for additional information about the $V_{\text {DDA }}$ pin function). $V_{\text {DD2 }}$
and $V_{\text {DDA }}$ are bypassed by a $47 \mu \mathrm{~F}$ ceramic capacitor (C7) and a $0.1 \mu \mathrm{~F}$ local bypass capacitor (C8) located close to the ADuM3070. R25, R31, C14, and C15 are provided for an optional and unpopulated snubber, which can be used to reduce radiated emissions.

Output Power Connections

Output loads can be connected to P7 and P9, labeled VISO1 and VISO2, respectively, in the schematic and $+7.5 \mathrm{~V} / 6 \mathrm{~V}$ and $+15 / 12 \mathrm{~V}$, respectively, on the silkscreen, which are the isolated, unregulated 7.5 V and regulated 15 V output supplies. Connect the return of the load to P8 and P10, which are labeled GND ISO on the silkscreen and GND4 in the schematic.
Side 2 is powered by the secondary isolated 15 V supply. The ADuM3070 internal low dropout regulator converts this voltage to 5 V . The regulated 5 V supply powers the ADuM 3070 secondary side. Therefore, the ADuM3070 $\mathrm{V}_{\text {reg }}$ pin is 15 V and the $\mathrm{V}_{\mathrm{dD} 2}$ pin is 5 V . The 15 V supply connects to P 9 . The 7.5 V supply connects to P7, which is labeled $+7.5 \mathrm{~V} / 6 \mathrm{~V}$ on the silkscreen and VISO1 on the schematic. The Side 2 ground reference is tied to P10. Note that the single and double supplies do not share grounds, although they have the same names on the silkscreen. The two supplies are isolated from each other with a greater than 15 mm gap. See the ADuM3070 data sheet for an explanation of the double supply theory of operation. Figure 12 through Figure 15 show efficiency curves for the double supply with the $+15 /+12 \mathrm{~V}$ isolated output supply connected to $\mathrm{V}_{\text {REG }}$.

Powering $V_{\text {REG }}$ from the Unregulated 7.5 V Supply

$\mathrm{V}_{\text {Reg }}$ can be powered by the unregulated 7.5 V supply, which results in higher efficiency. However, when the 15 V supply is unloaded, the unregulated 7.5 V supply may drop to about 3 V , which may not be high enough to power the ADuM3070 secondary side. This may cause the double supply to run open loop, leaving the 15 V supply unregulated. Using 15 V for $\mathrm{V}_{\text {reg }}$ ensures that the secondary side of the ADuM3471 powers up under light load conditions. Move the $0 \Omega, 0805$ resistor from R19 to R20 to power Side 2 from the 7.5 V supply.
Care must be taken to avoid driving the $\mathrm{V}_{\mathrm{DD} 2}$ output because this can result in permanent damage to the ADuM3070.

Table 3. Double Supply Terminal Function Descriptions

Terminal	Pin	Label	Description						
P5	1	+5 V IN	Side 15 V primary input supply						
P6	1	GND	Side 1 ground reference	$	$	P7	1	$+7.5 \mathrm{~V} / 6 \mathrm{~V}$	Side 27.5 V secondary isolated supply (regulated) Side 2 ground reference
:---	:---	:---	:---						
P9	1	GND ISO	1						
P10	1	GND ISO	Side 215 V secondary isolated supply (regulated) Side 2 ground reference						

TRANSFORMER SELECTION

The EVAL-ADuM3070EBZ supports multiple transformer options. The double supply is equipped with a Halo TGSAD290V6LF (T3) or a Coilcraft JA4650-BL (T4) 1:3 turns ratio transformer. The Coilcraft footprint is directly to the left of the Halo footprint (see the ADuM3070 data sheet for a details on transformer selection with the ADuM3070). Figure 12 and Figure 14 show the supply's efficiency with a Coilcraft and a Halo transformer, respectively, at different switching frequencies.

SWITCHING FREQUENCY OPTIONS

The resistor connected from the ADuM3070 OC pin to ground sets the double supply switching frequency. Figure 4 shows the relationship between this resistance and the converter switching frequency. The EVAL-ADuM3070EBZ can be configured with $0 \Omega, 0805$ resistors to four different preset switching frequencies. Short-circuiting R26 sets R28 ($300 \mathrm{k} \Omega$) and R29 ($150 \mathrm{k} \Omega$) in parallel, and short-circuiting R27 sets R28 and R30 ($100 \mathrm{k} \Omega$) in parallel. Table 4 lists the switching frequencies that can be selected by short- or open-circuiting R26 and R27. The user can select a different switching frequency by removing R26 and R27 and then choosing R28 based on Figure 4. The board is configured for the 500 kHz setting by default. Figure 12 and Figure 14 show how the switching frequency affects the efficiency with either transformer installed. Figure 13 shows how temperature affects efficiency.

Table 4. Switching Frequency Selection

R26	R27	Roc	Switching Frequency
Open	Open	$300 \mathrm{k} \Omega$	200 kHz
0Ω	Open	$100 \mathrm{k} \Omega$	500 kHz
Open	0Ω	$75 \mathrm{k} \Omega$	700 kHz
0Ω	0Ω	$50 \mathrm{k} \Omega$	1 MHz

Figure 12.5 V In to 15 V Out Efficiency with the 1:3 Coilcraft Transformer at Various Switching Frequencies

Figure 13. 5 V In to 15 V Out Efficiency with the 1:3 Coilcraft Transformer at 500 kHz and Various Temperatures

Figure 14.5 V In to 15 V Out Efficiency with the 1:3 Halo Transformer at Various Switching Frequencies

Figure 15. Double Supply Efficiency with the 1:5 Coilcraft Transformer for Different Output Options at 500 kHz

OTHER SECONDARY ISOLATED SUPPLY CONFIGURATIONS

The double supply can be configured for 12 V regulated and 6 V unregulated secondary isolated supplies by short-circuiting R17 with a 0Ω resistor for R18. The regulated supply voltage is set by the fraction of it that is fed back to the ADuM3070 via the voltage divider comprising R16, R17, R32, and R18. The voltage at the feedback pin is 1.25 V . With R18 open-circuited, the ADuM3070 feedback voltage is approximately 1.25 V if VISO2 is 15 V . When R18 is short-circuited, the feedback voltage is approximately 1.25 V if VISO2 is 12 V (see the ADuM3070 data sheet for more details on setting the secondary isolated output supply voltage). Figure 15 shows the efficiency curves for both output settings at 500 kHz with the 1:5 Coilcraft transformer.

Positive and Negative Outputs

The double supply can be set up as a positive and negative $\pm 15 \mathrm{~V}$ supply by changing the transformer to a turns ratio 1CT:5CT transformer (see the ADuM3070 data sheet for more information on these transformers). Other changes begin with removing the 0Ω resistors from R24 and R22 and inserting them into R23 and R21. Short-circuiting R23 instead of R24 makes the 7.5 V/6 V P7
become the -15 V supply. Short-circuiting R21 instead of R22 connects the transformer center tap to the ground plane instead of the node where L3, C12, and C13 are connected. Figure 16 shows which resistors should be short-circuited and opencircuited for the double supply or positive and negative supply configurations. Note that the negative supply is unregulated. The positive and negative supplies can be set for $\pm 12 \mathrm{~V}$ instead of $\pm 15 \mathrm{~V}$ by short-circuiting R18.

Whereas the 15 V output can be regulated, the same problems with regulation can happen as described in the Powering $V_{\text {reg }}$ from the Unregulated 7.5 V Supply section. In addition, the -15 V supply can vary over a wide range because it is unregulated and influenced by the changes that happen on the 15 V output.

SCHEMATIC

Figure 17. Double Supply Schematic

Evaluation Board User Guide

EVALUATION BOARD LAYOUT

Figure 18. Top Layer: Power Fill

Figure 19. Layer 2: Ground Plane

Figure 20. Layer 3: Power Plane

Figure 21. Bottom Layer: Ground Fill

ORDERING INFORMATION

BILL OF MATERIALS

Table 5.

Qty	Reference Designator	Description	Supplier/Part Number
5	P1, P3, P5, P7, P9	TP-104 series test point, black	Components Corp./TP-104-01-00
5	P2, P4, P6, P8, P10	TP-104 series test point, red	Components Corp./TP-104-01-02
2	U1, U2	ADuM3070	Analog Devices, Inc.
6	D1 to D6	Schottky barrier rectifier, 0.5 A, $40 \mathrm{~V}, \mathrm{SMD}, \mathrm{SOD}-123$	ON Semi/MBR0540
$1{ }^{1}$	T1	Transformer, 1:2 turns ratio, SMD	Halo/TGSAD-260V6LF
$1{ }^{1}$	T2	Transformer, 1:2 turns ratio, SMD	Coilcraft/JA4631-BL
$1{ }^{1}$	T3	Transformer, 1:3 turns ratio, SMD	Halo/TGSAD-290V6LF
$1{ }^{1}$	T4	Transformer, 1:3 turns ratio, SMD	Coilcraft/JA4650-BL
4	C2, C3, C8, C9	Capacitor ceramic, X7R, SMD, 0603, $0.1 \mu \mathrm{~F}$	AVX/0603YC104KAT2A
3	C1, C4, C7	Capacitor ceramic, X7R, SMD, 1210, 47 HF, 20\%, 10 V	Murata/GRM32ER71A476KE15L
4	C10 to C13	Capacitor ceramic, X7R, SMD, 1210, $22 \mu \mathrm{~F}, 20 \% 16 \mathrm{~V}$	Murata/GRM32ER71C226KE18L
3	L1 to L3	Inductor, SMD 1212, $47 \mu \mathrm{H}, 20 \%, 1.25 \Omega$	Murata/LQH3NPN470MM0
2	R1, R28	RES chip, SMD 0805, $300 \mathrm{k} \Omega, 1 / 8 \mathrm{~W}, 1 \%$	Yageo/RC0805FR-07300KL
2	R2, R29	RES chip, SMD 0805, $150 \mathrm{k} \Omega, 1 / 8 \mathrm{~W}, 1 \%$	Yageo/RC0805FR-07150KL
2	R3, R30	RES chip, SMD 0805, $100 \mathrm{k} \Omega, 1 / 8 \mathrm{~W}, 1 \%$	Panasonic/ECG/ERJ-6ENF1003V
2	R6, R32	RES chip, SMD 0805, $10.5 \mathrm{k} \Omega, 1 / 8 \mathrm{~W}, 1 \%$	Panasonic/ECG/ERJ-6ENF1052V
1	R4	RES chip, SMD 0805, $14.3 \mathrm{k} \Omega, 1 / 8 \mathrm{~W}, 1 \%$	Panasonic/ECG/ERJ-6ENF1432V
1	R5	RES chip, SMD 0805, $17.4 \mathrm{k} \Omega, 1 / 8 \mathrm{~W}, 1 \%$	Panasonic/ECG/ERJ-6ENF1742V
1	R17	RES chip, SMD 0805, $24.9 \mathrm{k} \Omega, 1 / 8 \mathrm{~W}, 1 \%$	Panasonic/ECG/ERJ-6ENF2492V
1	R16	RES chip, SMD 0805, $90.9 \mathrm{k} \Omega, 1 / 8 \mathrm{~W}, 1 \%$	Panasonic/ECG/ERJ-6ENF9092V
5	R19, R22, R24, R26, R10	RES chip, SMD 0805, 0 , 1/8 W	Panasonic/ECG/ERJ-6GEYOR00V
0	R11 to R15, R18, R20, R21, R23, R25, R27, R31, R33 to R40, C5, C6, C14, C15	Not populated	N/A

[^0]| Evaluation Board User Guide | UG-402 |
| :--- | :---: |

NOTES

ESD Caution
ESD (electrostatic discharge) sensitive device. Charged devices and circuit boards can discharge without detection. Although this product features patented or proprietary protection circuitry, damage may occur on devices subjected to high energy ESD. Therefore, proper ESD precautions should be taken to avoid performance degradation or loss of functionality.

Legal Terms and Conditions

 submits to the personal jurisdiction and venue of such courts. The United Nations Convention on Contracts for the International Sale of Goods shall not apply to this Agreement and is expressly disclaimed.

[^0]: ${ }^{1}$ The board is populated with either Coilcraft or Halo transformers. Do not populate both T1 and T2 or T3 and T4.

