AtmeL ARM-based Flash MCU

SAM G51 Series
DATASHEET

Description

The Atmel SAM G51 series is a member of a family of Flash microcontrollers based on
the high-performance 32-bit ARM® Cortex®-M4 RISC processor with Floating Point
Unit. It operates at a maximum speed of 48 MHz and features up to 256 Kbytes of
Flash and up to 64 Kbytes of SRAM. The peripheral set includes one USART, two
UARTS, two TWIs, one high-speed TWI, up to two SPls, one three-channel general-
purpose 16-bit timer, one RTT and one 8-channel 12-bit ADC.

The SAM G51 series is a general-purpose microcontroller with the best ratio in terms of
reduced power consumption, processing power and optimized peripheral set. This
enables the SAM G51 series to sustain a wide range of applications including
consumer, industrial control, and PC peripherals.

The device operates from 1.62V to 2V and is available in a 49-ball WLCSP or a 100-
lead LQFP package.

11209C-ATARM-20-Dec-13

Features
e Core
e ARM Cortex-M4 up to 48 MHz
e Memory Protection Unit (MPU)
e DSP Instructions
e Floating Point Unit (FPU)

e Thumb®-2 instruction set
e Memories
e 256 Kbytes embedded Flash
e 64 Kbytes embedded SRAM
e System
e Embedded voltage regulator for single-supply operation
e Power-on reset (POR) and Watchdog for safe operation

e Quartz or ceramic resonator oscillators: 3 to 20MHz power with failure detection and 32.768kHz for RTT or
device clock

e High-precision 8/16/24MHz factory-trimmed internal RC oscillator. In-application trimming access for
frequency adjustment

Slow clock internal RC oscillator as permanent low-power mode device clock
PLL range from 24 MHz to 48MHz for device clock
Up to 18 peripheral DMA (PDC) channels
8 x 32-bit General-Purpose Backup Registers (GPBR)
16 external interrupt lines
e Power consumption in active mode

e 103 HA/MHz running Fibonacci on SRAM
e Low-power modes (typical value)

e Wait mode 6.8 pA

e Wake-up time 3.2 us
e Peripherals

e One USART with SPI Mode

e Two 2-wire UARTs

e Three Two-Wire Interface (TWI) modules featuring two fast mode TWI masters and one high-speed TWI
slave

e One fast SPI at up to 24Mbit/s
e One three-channel 16-bit Timer/Counter (TC) with capture, waveform, compare and PWM modes
e One 32-bit Real-Time Timer and Real-Time Clock (RTC)

e Up to 38 1/0O lines with external interrupt capability (edge or level sensitivity), debouncing, glitch filtering and
on-die Series Resistor Termination. Individually Programmable Open-drain, Pull-up and pull-down resistor
and Synchronous Output

e Two up to 25-bit PIO Controllers
e Analog
e One 8-channel 12-bit ADC, up to 800 KSps
e Package
e 49-ball WLCSP
e 100-lead LQFP
e Industrial temperature operating range(-40° C/+85° C)

Atmel SAM G51 [DATASHEET] 2

11209C-ATARM-20-Dec-13

Table 1-1 summarizes the configuration of the SAM G51 devices.

Table 1-1. Configuration Summary
Feature SAM G51G18 SAM G51N18
Flash 256 Kbytes 256 Kbytes
SRAM 64 Kbytes 64 Kbytes
Package WLCSP49 LQFP100
Number of PIOs 38 38
Event System Yes Yes
8 channels 8 channels
Performance: Performance:
12-bit ADC 800 KSps at 10-bit resolution 600 KSps at 10-bit resolution
200 KSps at 11-bit resolution 150 KSps at 11-bit resolution
50 KSps at 12-bit resolution 37 KSps at 12-bit resolution
16-bit Timer 3 channels 3 channels
PDC Channels 18 18
USART/UART 1/2 1/2
SPI 2 2
TWI 2 masters 400 Kbit/s and 2 masters 400Kbits/s and

1 slave 3.4 Mbit/s

1 slave 3.4Mbit/s

Note: 1. One with SPI module + one USART configured in SPI mode.

Atmel

SAM G51 [DATASHEET]

11209C-ATARM-20-Dec-13

Configuration Summary

3

2.

Figure 2-1.

SAM G51 Block Diagram

SAM G51 Block Diagram

O
S
A\ < & N\
,\o\,\oo,\&,\o@ & RN
A A A A f
v
TST —>| System Controller Voltage
PCKO0-PCK2 HF Regulator
T v Flash
PLL PMC Unique
? JTAG and Serial Wire |dentifier
8/16/24MHz F’ l T l l T l
] In-Circuit Emulator
XIN 4—bi 3-20 MHz
XOUT +—»| |« Oscillator
= | Cortex-M4 Processor 24-Bit \ Flash SRAM
Fmax 48 MHz SysTick Counter 256 Kbytes || 64 Kbytes
WKUPO0-15 :I SUPC I
-1
XIN32 «—p »
XOUTa5 - | 32K osc | MPU FPU
ERASE <—»] tI 32K RC I 1/D S
8 GPBR
~ | RTT I
VDDIO — RTC
e
—| RsTC
NRST < P
Peripheral
Bridge
[wor || sw |
| PIOA/PIOB |
va
URXDO < » PDC Timer Counter A B P R
UTXDO < »> D) ¢
< | TC[0..2] | < > |« »>
PDC
URXD1 < > PDC
UTXD1 < > PDC | < > e >
+“—> SPI < > e P
SCK < > |e PDC < » le >
RTS < > |<
CTS « » » USART <+—>
RXD < > > < >
TXD <« > |< (> < >
| PDC | P
le—> 4
PDC >
ADTRG < » >) N
< > »| 12-bit ADC
ADI0..7] » «—> PDC »
— Real-Time Event

Atmel

TCLK[0..2]

TIOA[0..2]
TIOB[0..2]

NPCSO0
NPCS1
MISO
MOSI
SPCK

TWCKO
TWDO

TWCK1
TWD1

TWCK2
TWD2

SAM G51 [DATASHEET]

11209C-ATARM-20-Dec-13

3. Signal Description

Table 3-1 gives details on the signal names classified by peripheral.

Table 3-1. Signal Description List
Active Voltage
Signal Name Function Type Level Reference Comments
Power Supplies
VDDIO ig@g‘z@z '/SCL’];‘;T;S' Voltage Regulator, Power 1.62V to 2V
VDDOUT Voltage Regulator Output Power 1V output
VDDCORE Core Chip Power Supply Power S)OCBeDCéeS_I? xternally
GND Ground Ground
Clocks, Oscillators and PLLs
XIN Main Oscillator Input Input VDDIO Reset state:
XOUT Main Oscillator Output Output - P10 input
XIN32 Slow Clock Oscillator Input Input VDDIO ;1::;%123' pull-up
XOUT32 Slow Clock Oscillator Output Output - Schmitt Trigger
enabled
Reset state:
- PIO input
PCKO - PCK2 Programmable Clock Output Output - Internal pull-up
enabled
- Schmitt Trigger
enabled
ICE and JTAG
TCK Test Clock Input VDDIO No pull-up resistor
TDI Test Data In Input VDDIO No pull-up resistor
TDO Test Data Out Output VDDIO
TRACESWO Trace Asynchronous Data Out Output VDDIO
SWDIO Serial Wire Input/Output I/0 VDDIO
SWCLK Serial Wire Clock Input VDDIO
T™MS Test Mode Select Input VDDIO No pull-up resistor
JTAGSEL JTAG Selection Input High VDDIO Pull-down resistor
Flash Memory
ERASE (I;I:rsnr:na;r:]%NVM Configuration Bits Erase Input High VDDIO ;lgl:;?grwn (15 kQ)
Reset/Test
NRST Microcontroller Reset /0 Low VDDIO Pull-up resistor
TST Test Mode Select Input VDDIO Pull-down resistor
Universal Ansynchronous Receiver Transceiver - UARTX
URXDx ‘ UART Receive Data Input ‘ ’

Atmel SAM G51 [DATASHEET] 5

11209C-ATARM-20-Dec-13

Table 3-1. Signal Description List
Active Voltage
Signal Name Function Type Level Reference Comments
UTXDx UART Transmit Data Output
PIO Controller - PIOA - PIOB - PIOC
PAO - PA24 Parallel 1/0 Controller A o) VDDIO feus"eetd'“p input at
PBO - PB12 Parallel l/O Controller B o VDDIO feus";d'“p input at
Wake-up Pins

Wake-up pins are
WKUP 0-15 Wake-up Pin / External Interrupt I/10 VDDIO used also as External

Interrupt

Universal Synchronous Asynchronous Receiver Transmitter USART
SCK USART Serial Clock le}
TXD USART Transmit Data IO
RXD USART Receive Data Input
RTS USART Request To Send Output
CTS USART Clear To Send Input
Timer/Counter - TC
TCLKx TC Channel x External Clock Input Input
TIOAX TC Channel x I/O Line A I/0
TIOBx TC Channel x I/O Line B I/0
Serial Peripheral Interface - SPI

MISO Master In Slave Out le}
MOSI Master Out Slave In I/1O
SPCK SPI Serial Clock /0 High Speed Pad
NPCSO0 SPI Peripheral Chip Select 0 I/0 Low
NPCS1 SPI Peripheral Chip Select 1 Output Low

Two-Wire Interface- TWIx

High Speed Pad for

TWDx TWIx Two-wire Serial Data 110 TWDO

High Speed Pad for

TWCKX TWIx Two-wire Serial Clock /0 TWDCKO

10-bit Analog-to-Digital Converter - ADCC

ADO - AD7 Analog Inputs Analog
ADTRG ADC Trigger Input

Atmel SAM G51 [DATASHEET] 6

11209C-ATARM-20-Dec-13

4, Package and Pinout

Table 4-1. SAM G51 Packages

Device Package
SAM G51G18 WLCSP49
SAM G51N18 LQFP100

4.1 49-ball WLCSP Pinout

Table 4-2. SAM G51G18 49-ball WLCSP Pinout
Al PA9 B6 NRST D4 PB10 F2 PA19/AD2
A2 GND B7 PB12 D5 PAl F3 PA17/ADO
A3 PA24 C1 VDDCORE D6 PAS F4 PA21
A4 PB8/XOUT c2 PAl11l D7 VDDCORE F5 PA23
A5 PB9/XIN C3 PA12 El PB2/AD6 F6 PA16
A6 PB4 C4 PB6 E2 PBO/AD4 F7 PA8/XOUT32
A7 VDDIO C5 PA4 E3 PA18/AD1 Gl VDDIO
B1 PB11 C6 PA3 E4 PA14 G2 VDDOUT
B2 PB5 c7 PAO ES PA10 G3 GND
B3 PB7 D1 PA13 E6 TST G4 VDDIO
B4 PA2 D2 PB3/AD7 E7 PA7/XIN32 G5 PA22
B5 JTAGSEL D3 PB1/AD5 F1 PA20/AD3 G6 PA15
G7 PAG

Atmel SAM G51 [DATASHEET] 7

11209C-ATARM-20-Dec-13

4.2 100-lead LQFP Pinout

Table 4-3. SAM G51N18 100-lead Pinout

1 NC 26 NC 51 NC 76 NC

2 NC 27 NC 52 NC 77 NC

3 NC 28 PAG 53 PAL17 78 NC

4 NC 29 VDDIO 54 PA18 79 PA9
5 VDDIO 30 PA16 55 PA19 80 PB5
6 VDDIO 31 PA15 56 PA20 81 GND
7 NRST 32 PA23 57 PBO 82 GND
8 PB12 33 UNCONNECTED 58 PB1 83 GND
9 PA4 34 UNCONNECTED 59 PB2 84 PB6
10 PA3 35 PA22 60 PB3 85 PB7
11 PAO 36 PA21 61 VDDIO 86 PA24
12 PAl 37 VDDIO 62 PA14 87 PB8
13 PAS 38 VDDIO 63 PA13 88 PB9
14 VDDIO 39 GND 64 PA12 89 VDDIO
15 VDDCORE 40 GND 65 PA1l 90 PA2
16 VDDCORE 41 GND 66 VDDCORE 91 PB4
17 TEST 42 GND 67 VDDCORE 92 PB4
18 PA7 43 GND 68 PB10 93 JTAGSEL
19 PA8 44 VDDOUT 69 PB11 94 VDDIO
20 GND 45 VDDOUT 70 GND 95 VDDIO
21 NC 46 VDDIO 71 GND 96 NC
22 NC 47 VDDIO 72 PA10 97 NC
23 NC 48 VDDIO 73 NC 98 NC
24 NC 49 NC 74 NC 99 NC
25 NC 50 NC 75 NC 100 NC

Atmel SAM G51 [DATASHEET] 8

11209C-ATARM-20-Dec-13

5.1

5.2

5.3

Power Considerations

Power Supplies

The SAM G51 devices feature the following power supply pins:

e VDDCORE pins: Power the core, including the processor, the embedded memories and the peripherals.
VDDCORE must be connected to VDDOUT.

e VDDIO pins: Power the peripheral I/O lines, voltage regulator, ADC power supply; voltage ranges from 1.62V to 2V
for voltage regulator, ADC.

The ground pins GND are common to VDDCORE and VDDIO.

Voltage Regulator

The SAM G51 devices embed a core voltage regulator that is managed by the Supply Controller and that supplies the
Cortex-M4 core, internal memories (SRAM, ROM and Flash logic) and the peripherals. The voltage regulator supplies up
to 25 mA and features a quiescent current less than 1.3 pA. An internal adaptative biasing adjusts the regulator
quiescent current depending on the required load current.

For adequate input and output power supply decoupling/bypassing, refer to information provided on the VDDCORE
voltage regulator in the Electrical Characteristics section of the datasheet.

Typical Powering Schematics

The SAM G51 devices support a 1.62V-2V single supply mode. The internal regulator input is connected to the source
and its output feeds VDDCORE. Figure 5-1 shows the power schematics.

To achieve system performance, the internal regulator must be used.

Figure 5-1. Single Supply

Main Supply (1.62V-2V)

Voltage
Regulator

Atmel SAM G51 [DATASHEET] 9

11209C-ATARM-20-Dec-13

54 Functional Modes

5.4.1 Active Mode

Active mode is the normal running mode with the core clock running from the fast RC oscillator, the main crystal oscillator
or the PLL. The power management controller can be used to adapt the frequency and to disable the peripheral clocks.

5.4.2 Wait Mode

The purpose of wait mode is to achieve very low power consumption while maintaining the entire device in a powered
state for a wake-up time of less than 5 ps. The wake-up time is achieved while the system is running from the internal
SRAM. The function allowing to enter and exit the wait mode linked and executed in the internal SRAM. If the wake-up
function is executed in internal Flash, the wake-up time is 70 us (for C code running in Flash, the number of wait states
must be 0).

The current consumption in wait mode is typically less than 10 pA (total current consumption). The clocks of the core, the
peripherals and memories are stopped. However, power supplies are still maintained, thus allowing memory retention,
CPU context saving and fast start-up. Wait mode is entered by setting the WAITMODE bitto 1 in the CKGR_MOR
register in conjunction with FLPM = 0 or FLPM = 1 bits of the PMC_FSMR register. or by the Wait for Event (WFE)
instruction.

Note: The WFE instruction can add complexity in application state machines. This is because the WFE instruction goes
along with an event flag of the Cortex processor (cannot be managed by the software application). The event flag can
be set by interrupts, a debug event or an event signal from another processor. Since an interrupt may take place just
before the execution of WFE, WFE takes into account events that happened in the past. As a result, WFE prevents the
device from entering wait mode if an interrupt event has occurred. To work around this complexity, the WAITMODE bit
in the PMC Clock Generator Main Oscillator Register of the Power Management Controller (PMC) can be used.

The Cortex-M4 processor is able to handle external or internal events in order to wake up the core. This is done by
configuring the external lines WKUPO-15 as fast start-up wake-up pins (refer to Section 5.5 “Fast Start-up”) or the RTC,
RTT alarms for internal events.

To enter wait mode with WAITMODE bit:

e Select the 8/16/24 MHz fast RC oscillator as Main Clock. If 24 MHz is selected and the C code runs on the SRAM,
wake-up time is less than 5 ps.

Set the FLPM field in the PMC Fast Start-up Mode Register (PMC_FSMR).

Set Flash Wait State to 0.

Set the WAITMODE bit = 1 in PMC Main Oscillator Register (CKGR_MOR).

Wait for Master Clock Ready MCKRDY = 1 in the PMC Status Register (PMC_SR).
To enter wait mode with WFE:

e Select the 8/16/24 MHz fast RC oscillator as Main Clock. If 24 MHz is selected and the C code runs on the SRAM,
wake-up time is less than 5 ps.

Set the FLPM field in the PMC Fast Start-up Mode Register (PMC_FSMR).
Set Flash Wait State to 0.

Set the LPM bit in the PMC Fast Startup Mode Register (PMC_FSMR).
Execute the Wait-For-Event (WFE) instruction of the processor.

In both cases, depending on the value of the field Flash Low Power Mode (FLPM), the Flash enters three different
modes:

e FLPM =0 in stand-by mode (Low power consumption)
e FLPM =1 in deep power-down mode (Extra-low power consumption)
e FLPM =2in idle mode. Memory ready for read access.

Atmel SAM G51 [DATASHEET] 10

11209C-ATARM-20-Dec-13

5.4.3 Sleep Mode

The purpose of sleep mode is to optimize power consumption of the device versus response time. In sleep mode,

only the core clock is stopped. The peripheral clocks can be enabled. The current consumption in sleep mode is

application-dependent.

Sleep mode is entered via Wait for Interrupt (WFI).

The processor can be awakened from an interrupt if the WFI instruction of the Cortex-M4 procesor is used.

Table 5-1 summarizes the power consumption, wake-up time and system state in wait and in sleep modes.
Table 5-1. Low Power Mode Configuration Summary

SUPC,
32 kHz
Oscillator POR
RTCRTT | supply Core PIO State
POR Monitor | Memory Potential Wake-up | Core at |WhileinLow| PIO State |Consumption| Wake-up
Mode | Regulator |on VDDIO |Peripherals Mode Entry Sources Wake-up |Power Mode | at Wake-up @ ©) Time®
Wait A t from:
Mode WAITMODE =1 + ny event from.
/Flash P q FLPM =1 Fast start-up
W/Flas owere
) or through WUPO-15 cjocked |Previous) @
in Deep ON OFF (Not pins back state saved Unchanged <10 pA <5ps
Power clocked) \(;V_':EL;MSI:EEPDEEP = |IRTC alarm
- RTT alarm
Down 1+FLPM=1
Mode
Powered® [WFI Entry mode =WFI
o Interrupt Only; Clocked |Previous @ @

Sleep ON ON (Not +SLEEPDEEP bit =0 Any Enabled back state saved Unchanged
Mode clocked) +LPM bit=0 Interrupt
Notes: 1. When considering wake-up time, the time required to start the PLL is not taken into account. Once started, the device

No o s~MwN

Atmel

works with the 8/16/24 MHz Fast RC oscillator. The user has to add the PLL wake-up time if it is needed in the sys-
tem. The wake-up time is defined as the time taken for wake-up until the first instruction is fetched.

The external loads on PIOs are not taken into account in the calculation.
BOD current consumption is not included.
Wake-up from RAM.

10 pA is for typical conditions.
Depends on MCK frequency.
In this mode, the core is supplied and not clocked. Some peripherals can be clocked.

SAM G51 [DATASHEET]

11209C-ATARM-20-Dec-13

11

5.5 Fast Start-up

The SAM G51 devices allow the processor to restart in a few microseconds while the processor is in wait mode. A fast
start-up can occur upon detection of a low level on one of the 17 wake-up inputs.

The fast restart circuitry, as shown in Figure 5-2, is fully asynchronous and provides a fast start-up signal to the Power
Management Controller. As soon as the fast start-up signal is asserted, the PMC restarts from the last fast RC selected
(the embedded 24 MHz fast RC oscillator), switches the master clock on the last clock of RC oscillator and reenables the
processor clock. At wake-up of the wait mode, the code is executed in the SRAM.

Figure 5-2. Fast Start-up Source

el

FSTT1
Falling/Rising
WKUPO Di Edge
1
1
1
1
|

Detector
FSTT15

rtc_alarm

rtt_alarm

fast_restart

Falling/Rising
WKUP15 Di Edge
Detector

Figure 5-3. Start-up Sequence

STDBY Mode 5

o MULWL_____T1_TLUUIL

Startup Time

<

! T<5us .. PLL startup<200us L
Lt} Lol

Lol

IR A
A
v

cpu clock PLL stdby I 8/16/24 MHz PLL
: T<70us ..
Flash Ready
Reset signals resynchronised on specific clocks
SAM G51 [DATASHEET] 12
Atmel

11209C-ATARM-20-Dec-13

6. Processor and Architecture

6.1 ARM Cortex-M4 Processor

Thumb-2 (ISA) subset consisting of all base Thumb-2 instructions, 16-bit and 32-bit
Harvard processor architecture enabling simultaneous instruction fetch with data load/store
Three-stage pipeline

Single-cycle 32-bit multiply

Hardware divide

Thumb and debug states

Handler and thread modes

Low-latency ISR entry and exit

Memory Protection Unit (MPU)

Floating Point Unit(FPU)

6.2 APB/AHB Bridge
The SAM G51 devices embed one peripheral bridge. The peripherals of the bridge are clocked by MCK.

6.3 Peripheral DMA Controller

The Peripheral DMA Controller handles transfer requests from the channel according to the following priorities (CHO is
high priority):

Table 6-1. Peripheral DMA Controller
Instance Name Channel T/R Channel NR
MEM2MEM Transmit 17
SPI Transmit 16
TWI1 Transmit 15
TWI2 Transmit 14
UARTO Transmit 13
UART1 Transmit 12
USART Transmit 11
TWIO Transmit 10
MEM2MEM Receive 9
TCO:TC2 Receive 8
SPI Receive 7
TWI1 Receive 6
TWI2 Receive 5
UARTO Receive 4
UART1 Receive 3
USART Receive 2
ADC Receive 1
TWIO Receive 0
AtmeL SAM G51 [DATASHEET] 13

11209C-ATARM-20-Dec-13

6.4 Debug and Test Features

Atmel

Debug access to all memories and registers in the system, including Cortex-M4 register bank when the core is
running, halted, slept or held in reset

Serial Wire Debug Port (SW-DP) and Serial Wire JTAG Debug Port (SWJ-DP) debug access

Flash Patch and Breakpoint (FPB) unit for implementing breakpoints and code patches

Data Watchpoint and Trace (DWT) unit for implementing watchpoints, data tracing, and system profiling
Instrumentation Trace Macrocell (ITM) for support of printf style debugging

IEEE1149.1 JTAG boundary scan on all digital pins

SAM G51 [DATASHEET] 14

11209C-ATARM-20-Dec-13

6.5

Figure 6-1.

Product Mapping

SAM G51 Series Product Mapping

0X00000000 Address memory space 5500000600 Code
Boot Memory
Code 0x00400000
Internal Flash
0x20000000 . 0x00800000
) Reserved
Internal SRAM
Reserved
0x40000000
) Ss Internal SRAM
Peripherals ’.:\’ 0x20000000
SRAM
0x60000000 0x20080000
. “.’ ”\ Undefined (Abort)
Reserved i 0x40000000
. Peripherals
OxEO0000000 ' 0x4000000
B Reserved
System \ 0x40004000
"‘ Reserved
OXFFFFFFFF ' 0x40008000
H SPI
: 0x4000C000 21
"‘ Reserved
offset ' 0x40010000
bloCkperipheral ' Tco TCO
— H +0x40 23
(+ : wired-or) -. TCO Tc1
' +0X80 24
: TCO e
' 0x40014000 25
H Reserved
“‘ +0x40
", Reserved
' +0x80
'.‘ Reserved
10x40018000
TWIO
©x4001C000 19
TWIL
0x40020000 20
\ Reserved
O)‘t40024000
' USARTO
0x40028000 14
‘._ Reserved
0x4002C000
", Reserved
0x4Q030000
' Reserved
0x40034000
H Reserved
0x40038000
' ADC
0x4003C000 29
‘|‘ Reserved
0x40040000
TWI2
0x40044000 22
' Reserved
0x40048000
Reserved
0x4004C000
' Reserved
0x400E0000
". System Controller
0x400E260Q i
'; Reserved
0x60000000

Atmel

System Controller

0x400E0000
K Reserved
0x400E020q
MATRIX
0x400E0400
! PMC
0x400E0600 5
UARTO
0x400E0740 8
CHIPID
0x400E0800
: UART1
0x400EQAOO 9
: EFC
0x400EOCO0 6
." Reserved
0x400EOEQ0
PIOA
0x400E1000 11
: PIOB
0x400E1200 12
;' Reserved
0x400E1400
; SYSC Lot
! +0x10 1
: SYSC supc
; +0x30
i sysc o
! +Ox50 3
; svsc o
! +0x60 4
: SYSC oo
! +0x90 2
: SYSC Gper
0x400E1600
;' Reserved
0x400E2600

SAM G51 [DATASHEET] 15

11209C-ATARM-20-Dec-13

7. Memories

7.1 Embedded Memories

7.1.1 Internal SRAM
The SAM G51 devices embed a total of 64 Kbytes of high-speed SRAM.
The SRAM is accessible over the Cortex-M4 bus at address 0x2000 0000.
The SRAM is in the bit band region. The bit band alias region is from 0x2200 0000 and 0x23FF FFFF.

7.1.2 Embedded Flash

7.1.2.1 Flash Overview

The memory is organized in sectors. Each sector comprises 64 Kbytes. The first sector of 64 Kbytes is divided into three
smaller sectors.

The three smaller sectors are comprised of 2 sectors of 8 Kbytes and 1 sector of 48 Kbytes. Refer to Figure 7-1, "Global
Flash Organization".

Figure 7-1. Global Flash Organization

Flash Organization

Sector size Sector name

8K Bytes Small Sector 0

8K Bytes Small Sector 1 Sector 0
48K Bytes Larger Sector

64K Bytes Sector 1

64K Bytes Sector n

Each sector is organized in pages of 512 bytes.

For sector O:
e The smaller sector 0 has 16 pages of 512 bytes
e The smaller sector 1 has 16 pages of 512 bytes
e The larger sector has 96 pages of 512 bytes

Atmel SAM G51 [DATASHEET] 16

11209C-ATARM-20-Dec-13

From sector 1 to n:

The rest of the array is composed of 64 Kbytes sectors of 128 pages of 512 bytes each. Refer to Figure 7-2, "Flash
Sector Organization".

Figure 7-2. Flash Sector Organization

Flash Sector Organization

A sector size is 64 KBytes

16 pages of 512 Bytes Smaller sector 0

Sector 0 16 pages of 512 Bytes Smaller sector 1

96 pages of 512 Bytes Larger sector

Sector n 128 pages of 512 Bytes

The SAM G51 devices Flash size is 256 Kbytes. Refer to Figure 7-3, "Flash Size" for the organization of the Flash.

Figure 7-3. Flash Size
Flash 256 KBytes

2 * 8 KBytes

1* 48 KBytes

3* 64 KBytes

The following erase commands can be used depending on the sector size:
e 8Kbyte small sector
e Erase and write page(EWP)
e Erase and write page and lock (EWPL)
e FErase sector (ES) with FARG set to a page number in the sector to erase
[]

Erase pages (EPA) with FARG [1:0] = 0 to erase four pages or FARG [1:0] = 1 for to erase eight pages.
FARG [1:0] = 2 and FARG [1:0] = 3 must not be used.

e 48 Kbyte and 64Kbyte sectors

e One block of 8 pages inside any sector, with the command Erase pages (EPA) with FARG[1:0] =1

e One block of 16 pages inside any sector, with the command Erase pages (EPA) and FARG[1:0] = 2

e One block of 32 pages inside any sector, with the command Erase pages (EPA) and FARG[1:0] =3

e One sector with the command Erase sector (ES) and FARG set to a page number in the sector to erase
e Entire memory plane

e The entire Flash, with the command Erase all (EA)

The memory has one additional reprogrammable page that can be used as page signature by the user. It is accessible
through specific modes, for erase, write and read operations. Erase pin assertion will not erase the user signature page.

SAM G51 [DATASHEET] 17
A t m eL 11209C-ATARM-20-Dec-13

7.1.2.2 Enhanced Embedded Flash Controller

The Enhanced Embedded Flash Controller manages accesses performed by the masters of the system. It enables
reading the Flash and writing the write buffer. It also contains a User Interface, mapped on the APB.

The Enhanced Embedded Flash Controller ensures the interface to the Flash block.
It manages the programming, erasing, locking and unlocking sequences of the Flash using a full set of commands.

One of the commands returns the embedded Flash descriptor definition that informs the system about the Flash
organization, thus making the software generic.

7.1.2.3 Flash Speed

The user must set the number of wait states depending on the frequency used:

For more details, refer to the AC characteristics in the Electrical Characteristics section.
7.1.2.4 Lock Regions

Several lock bits are used to protect write and erase operations on lock regions. A lock region is composed of several
consecutive pages, and each lock region has its associated lock bit.

Table 7-1. Lock Bit Number
Product Number of Lock Bits Lock Region Size
SAM G51 32 8 Kbytes

If a locked region’s erase or program command occurs, the command is aborted and the EEFC triggers an interrupt.

The lock bits are software programmable through the EEFC User Interface. The command “Set Lock Bit” enables the
protection. The command “Clear Lock Bit” unlocks the lock region.

Asserting the ERASE pin clears the lock bits, thus unlocking the entire Flash.

7.1.25 Security Bit

The SAM G51 devices feature a security bit, based on a specific General Purpose NVM bit (GPNVM bit 0). When the
security is enabled, any access to the Flash, SRAM, core registers and internal peripherals either through the ICE
interface is forbidden. This ensures the confidentiality of the code programmed in the Flash.

This security bit can only be enabled, through the command “Set General Purpose NVM Bit 0” of the EEFC User
Interface. Disabling the security bit can only be achieved by asserting the ERASE pin at 1, and after a full Flash erase is
performed. When the security bit is deactivated, all accesses to the Flash, SRAM, core registers and internal peripherals
are permitted.

It is important to note that the assertion of the ERASE pin should always be longer than 200 ms.

As the ERASE pin integrates a permanent pull-down, it can be left unconnected during normal operation. However, it is
safer to connect it directly to GND for the final application.

7.1.2.6 Calibration Bits

The GPNVM bits are used to calibrate the POR, the voltage regulator and RC 8/16/24. These bits are factory configured
and cannot be changed by the user. The ERASE pin has no effect on the calibration bits.

7.1.2.7 Unique Identifier

Each device integrates its own 128-bit unique identifier. These bits are factory configured and cannot be changed by the
user. The ERASE pin has no effect on the unique identifier.

7.1.2.8 User Signature

Each part contains a user signature of 512 bytes. It can be used by the user to store user information such as trimming,
keys, etc., that the customer does not want to be erased by asserting the ERASE pin or by software ERASE command.

Read, write and erase of this area is allowed.

Atmel SAM G51 [DATASHEET] 18

11209C-ATARM-20-Dec-13

8. System Controller

The System Controller is a set of peripherals that allow handling of key elements of the system, such as power, resets,
clocks, time, interrupts, watchdog, etc. Refer to the section on the Supply Controller (SUPC).

8.1 System Controller and Peripherals Mapping
Refer to Section 6-1 “SAM G51 Series Product Mapping”.

All the peripherals are in the bit band region and are mapped in the bit band alias region.

8.2 Power-on Reset, Supply Monitor

The SAM G51 devices embed three features to monitor, warn and/or reset the chip:
e Power-on reset on VDDIO
e Power-on reset on VDDCORE
e Supply monitor on VDDIO

8.3 Reset Controller

The Reset Controller is based on a power-on reset cell. The Reset Controller returns the source of the last reset to
software: general reset, wake-up reset, software reset, user reset or watchdog reset.

The Reset Controller controls the internal resets of the system and the input/output of the NRST pin. It shapes a reset
signal for the external devices, simplifying the connection of a push-button on the NRST pin to implemement a manual
reset. By default, the NRST pin is configured as an input.

The configuration of the Reset Controller is saved as supplied on VDDIO.

8.4 Supply Controller

The Supply Controller controls the power supplies of each section of the processor and the peripherals (via voltage
regulator control).

The Supply Controller has its own reset circuitry and is clocked by the 32 kHz slow clock generator.

The reset circuitry is based on a zero-power power-on reset cell and a POR (power-on reset) cell. The zero-power
power-on reset allows the Supply Controller to start properly, while the software-programmable POR allows detection of
either a battery discharge or main voltage loss.

The slow clock generator is based on a 32 kHz crystal oscillator and an embedded 32 kHz RC oscillator. The user can
also set the crystal oscillator in bypass mode instead of connecting a crystal. In this case, the user has to provide the
external clock signal on XIN32. The slow clock defaults to the RC oscillator, but the software can enable the crystal
oscillator and select it as the slow clock source.

The Supply Controller starts up the device by sequentially enabling the internal power switches and the voltage regulator,
then it generates the proper reset signals to the core power supply.

It also enables to set the system in different low power modes and to wake it up from a wide range of events.

The threshold value of the voltage regulator can be adjusted by the VRVDD bitfield in SUPC_MR register. Refer to
Supply Controller Mode Register details in the section on the Supply Controller (SUPC).

Atmel SAM G51 [DATASHEET] 19

11209C-ATARM-20-Dec-13

8.5 Clock Generator

The Clock Generator is made up of:
e One low-power 32768Hz slow clock oscillator with bypass mode
e One low-power RC oscillator

e One factory-programmed fast RC oscillator with three selectable output frequencies: 8, 16 or 24 MHz. At startup, 8
MHz is selected

e One 24 to 48 MHz programmable PLL that provides the clock MCK to the processor and to the peripherals. The
PLL has an input divider to offer a wider range of output frequencies from the main clock input

Figure 8-1. Clock Generator Block Diagram

Clock Generator
—XTALSEL
On Chip
32k RC OSC
Slow Clock
SLCK
XIN32 Slow Clock
Oscillator
XOUT32 | I
XIN | I 3-20 MHz
Main
XOUT | I Oscillator Main Clock
MAINCK
On Chip
12/8/4 MHz
RCOsC MAINSEL
PLL and PLLA Clock
Divider A PLLACK

l Status T Control

Power
Management
Controller

The RC32K is measured at ambient temperature during chip test and its value is stored in the Flash signature page. The
frequency accuracy of the 32 kHz RC oscillator in provided in the Electrical Characteristics section.

When the application uses the RC32K, the value of the frequency accuracy of RC32K must be read and included in the
API to use the RC32K at 32 kHz.

Atmel SAM G51 [DATASHEET] 20

11209C-ATARM-20-Dec-13

8.6 Power Management Controller

The Power Management Controller provides all the clock signals to the system:
e Processor clock HCLK
Free-running processor clock FCLK
The Cortex SysTick external clock
The master clock MCK, in particular to the matrix and the memory interfaces
Independent peripheral clocks, typically at the frequency of MCK
e Three programmable clock outputs: PCKO, PCK1 and PCK2

The Supply Controller chooses between the 32 kHz RC oscillator or the crystal oscillator. The unused oscillator is
disabled automatically so that power consumption is optimized.

By default, at start-up the chip runs out of the master clock using the fast RC oscillator running at 8 MHz.

The user can trim the 8, 16 and 24 MHz RC oscillator frequency by software.

Figure 8-2. SAM G51 Power Management Controller Block Diagram

Processor
Qock |[——» HK
Controller
< int
Seep Mode
Divider
FCLK
Master Clock Controller
SCK Prescaler
MAINCK] 11/2/4,../64 MCK
PLLCK Peripherals
L, Clock Controller periph_clk.]
ON/OFF

Programmable Clock Controller

A ON/OFF

—] Prescaler - ki

MAINCK — 11)2,3/4....]64 pekl]
PLLCK —

The SysTick calibration value is fixed to 6000 which allows the generation of a time base of 1 ms with SystTick clock to
MHz (max HCLK 48 MHz/8 = 6000, so STCALIB = 0x1770)

8.7 Watchdog Timer

e 16-hit key-protected only-once-programmable counter
e Windowed, prevents the processor to be in a dead-lock on the watchdog access

Atmel SAM G51 [DATASHEET] 21

11209C-ATARM-20-Dec-13

8.8 SysTick Timer
e 24-bit down counter
e Self-reload capability
e Flexible system timer

8.9 Real-Time Timer
e Real-Time Timer, allowing backup of time with different accuracies
e 32-bit free-running backup counter
e Integrates a 16-bit programmable prescaler running on slow clock
e Alarm register generates a wake-up of the system through the Shutdown Controller
e Wake-up from wait mode through the Power Management Controller

8.10 Real Time Clock
e Low power consumption
Full asynchronous design
Two-hundred-year calendar
Programmable periodic interrupt
Alarm and update parallel load
Control of alarm and update Time/Calendar Data In

8.11 General-Purpose Backup Registers
e Eight 32-bit backup general-purpose registers

8.12 Nested Vectored Interrupt Controller
e Forty-seven maskable interrupts, external to NVIC
e Sixteen priority levels
e Dynamic reprioritization of interrupts
e Priority grouping
e Selection of preempting interrupt levels and non-preempting interrupt levels
e Support for tail-chaining and late arrival of interrupts
e Back-to-back interrupt processing without the overhead of state saving and restoration between interrupts
e Processor state automatically saved on interrupt entry, and restored on interrupt exit, with no instruction overhead

8.13 Chip Identification

e Chip Identifier (CHIPID) registers permit recognition of the device and its revision

Table 8-1. SAM G51 Chip IDs Register

Chip Name CHIPID_CIDR CHIPID_EXID
SAM G51G18 0x243B_09EO 0x0
SAM G51N18 0x243B_09ES8 0x0

e JTAG ID: 0x05B3_AO03F

Atmel SAM G51 [DATASHEET] 22

11209C-ATARM-20-Dec-13

8.14 PIO Controllers
e Two PIO Controllers, PIOA and PIOB that control a maximum of 25 I/O lines
e Fully programmable through Set/Clear registers

Table 8-2. PIO Lines Available Depending on Pin Count
Version 49 Pins 100 Pins
PIOA 25 25
P1OB 13 13

e Multiplexing of four peripheral functions per 1/O line

e Foreach I/O line (whether assigned to a peripheral or used as general purpose 1/O):
e Input change, rising edge, falling edge, low level and level interrupt

Debouncing and glitch filter

Multi-drive option enables driving in open drain

Programmable pull-up on each I/O line

Pin data status register, supplies visibility of the level on the pin at any time

Additional interrupt modes on a programmable event: rising edge, falling edge, low level or high level
e Lock of the configuration by the connected peripheral

Selection of the drive level

Synchronous output, provides set and clear of several I/O lines in a single write

Register write protection

Programmable Schmitt trigger inputs

Atmel SAM G51 [DATASHEET] 23

11209C-ATARM-20-Dec-13

8.15 Peripheral Identifiers

Table 8-3 defines the peripheral identifiers of the SAM G51 devices. A peripheral identifier is required for the control of
the peripheral interrupts with the Nested Vectored Interrupt Controller and for the control of the peripheral clock with the
Power Management Controller. The external interrupts are connected to WKUP pins.

Table 8-3. Peripheral Identifiers
PMC

Instance ID Instance Name NVIC Interrupt Clock Control Instance Description
0 SUPC X — Supply Controller
1 RSTC X — Reset Controller
2 RTC X — Real Time Clock
3 RTT X — Real Time Timer
4 WDT X — Watchdog Timer
5 PMC X — Power Management Controller
6 EFC X — Enhanced Flash Controller
7 — — — Reserved
8 UARTO X X UART O
9 UART1 X X UART 1
10 — — — Reserved
11 PIOA X X Parallel /O Controller A
12 PIOB X X Parallel 1/O Controller B
13 — — — Reserved
14 USART X X USART
15 MEM2MEM X X MEM2MEM
16 — — — Reserved
17 — — — Reserved
18 — — — Reserved
19 TWIO X X Two-Wire Interface 0 HS
20 TWI1 X X Two-Wire Interface 1
21 SPI X X Serial Peripheral Interface
22 TWI2 X X Two Wire Interface 2
23 TCO X X Timer/Counter O
24 TC1 X X Timer/Counter 1
25 TC2 X X Timer/Counter 2
26 — — — Reserved
27 — — — Reserved
28 — — — Reserved
29 ADC X X Analog-to-Digital Converter
30 ARM X — FPU
31 WKUPO X — External interrupt 0

Atmel SAM G51 [DATASHEET] 24

11209C-ATARM-20-Dec-13

Table 8-3. Peripheral Identifiers (Continued)
PMC

Instance ID Instance Name NVIC Interrupt Clock Control Instance Description
32 WKUP1 X — External interrupt 1
33 WKUP2 X — External interrupt 2
34 WKUP3 X — External interrupt 3
35 WKUP4 X — External interrupt 4
36 WKUP5 X — External interrupt 5
37 WKUP6 X — External interrupt 6
38 WKUP7 X — External interrupt 7
39 WKUP8 X — External interrupt 8
40 WKUP9 X — External interrupt 9
41 WKUP10 X — External interrupt 10
42 WKUP11 X — External interrupt 11
43 WKUP12 X — External interrupt 12
44 WKUP13 X — External interrupt 13
45 WKUP14 X — External interrupt 14
46 WKUP15 X — External interrupt 15

Atmel SAM G51 [DATASHEET] 25

11209C-ATARM-20-Dec-13

8.16 Peripherals Signals Multiplexing on I/O Lines

The SAM G51 devices feature two P1O (49-ball) controllers, PIOA and PIOB, which multiplex the 1/O lines of the
peripherals set.

Each line can be assigned to one of two peripheral functions: A or B. The multiplexing tables in the following paragraphs
define how the I/O lines of the peripherals A and B are multiplexed on the PIO controllers.

Note that some peripheral functions, which are output only, may be duplicated within both tables.

8.16.1 PIO Controller A Multiplexing

Table 8-4. Multiplexing on PIO Controller A (PIOA)

I/O Line Peripheral A Peripheral B Extra Function System Function
PAO — TIOAO WKUPO —
PA1 — TIOBO WKUP1 —
PA2 TCLKO — WKUP2 —
PA3 TWDO — — —
PA4 TWCKO — — —
PA5 RXD — WKUP4 —
PA6 TXD PCKO — —
PA7 — — — XIN32
PA8 — ADTRG WKUP5 XOUT32
PA9 URXDO NPCS1 WKUP6 —
PA10 UTXDO — — —
PA11 NPCSO — WKUP7 —
PA12 MISO — — —
PA13 MOSI — — —
PA14 SPCK — WKUPS8 —
PA15 RTS SCK — —
PA16 CTS TIOB1 — —
PA17 — PCK1 ADO —
PA18 — PCK2 AD1 —
PA19 TCLK1 — AD2 —
PA20 TCLK2 — AD3 —
PA21 TIOA2 PCK1 WKUP9 —
PA22 TIOB2 — WKUP10 —
PA23 — TIOAl WKUP3 —
PA24 — — WKUP11 —

Atmel

SAM G51 [DATASHEET] 26

11209C-ATARM-20-Dec-13

8.16.2 PIO Controller B Multiplexing

Table 8-5. Multiplexing on PIO Controller B (PIOB)

I/O Line Peripheral A Peripheral B Extra Function System Function
PBO — TWD2 AD4 —
PB1 — TWCK2 AD5 —
PB2 URXD1 NPCS1 AD6/WKUP12 —
PB3 UTXD1 PCK2 AD7/WKUP13 —
PB4 — — — TDI
PB5 — — — TDO/ TRACESWO
PB6 — — — TMS/SWDIO
PB7 — — — TCK/SWCLK
PB8 TWD1 — WKUP14 XOuT
PB9 TWCK1 — WKUP15 XIN
PB10 TwD1® TwD2W —
PB11 TWCK1®W TWCK2W —
PB12 — — — ERASE

Note: 1. Each TWI (TWI1,TWI2) can be routed on two different pairs of 10s. TWI1 and TWI2 share one pair of 10s
(PB10 and PB11). The configuration of the shared 10s determine which TWI is selected.

8.16.2.1 TWI Muxing on PB10 and PB11
The selection of the TWI used in PB10 and PB11 is determined by the configuration of PB10 and PB11. Three modes
are possible: normal mode, alternative mode TWI1 and alternative mode TWI2.
Normal mode is:
e TWI1 only used: PB09 and PB08 must be configured as PIO Peripheral A
e TWI2 only used: PBOO and PB0O1 must be configured as PIO Peripheral B

e TWI1 and TWI2 used: PB09 and PB08 must be configured as P1O Peripheral A and PB0O0O and PBO1 must be
configured as PIO Peripheral B

Alternative mode TWI1 is:

e TWI1is muxing on PB10 and PB11: PB10 and PB11 must be configured as PIO Peripheral A. PB8 and PB9 can
be configured as GP10, WKUP pin or XIN, XOUT. PB8 and PB9 cannot be used as peripherals

Alternative mode TWI2 is:

e TWI2is muxing on PB10 and PB11: PB10 and PB11 must be configured as PIO Peripheral B. PBO and PB1 can
be configured as GPIO, analog input. PBO and PB1 cannot be used as peripherals

Alternative Mode TWI1 example:
PB10 is driven by TWD1 signal if the PB10 is configured as peripheral (PIO_PSR[10]=1 and
PIO_ABCDSR1[10]=PIO_ABCDSR2[10]=0).

PB11 is driven by TWCK1 signal if the PB11 is configured as peripheral (PIO_PSR[11]=1 and
PIO_ABCDSR1[11]=PIO_ABCDSR2[11]=0).

SAM G51 [DATASHEET] 27

11209C-ATARM-20-Dec-13

Atmel

Table 8-6. TWI Multiplexing
PIO Config
Requirement Configuration | Configuration
Configuration of PB10 of PB11 PBO PB1 PB8 PB9 PB10 PB11
Normal Mode Enable Enable
TWI1 and/or TWI2 TWD2 TWCK2 TWD1 TWCK1 GPIO GPIO
PIO_PER[10] | PIO_PERJ[11]
Used
GPIO or
Al ve Mod Config PB10 Config PB11 _ GPIO or
tem_?:/'\\llli ode as Peripheral | as Peripheral TWD2 | Twckz2 | WKUPpin |\ ip pin | TWD1 | TWCK1
A A wour | OrXIN®
GPIO
Config PB10 Config PB10 GPIO or or
Alternative Mode as Peripheral as Peripheral AD AD TWD1 TWCK1 TWD2 | TWCK2
TWI2 B B Input® Input™®)

Note: 1. Configuration of PBx can be done after the configuration of PB10 and PB11.

Figure 8-3. TWI Master PIO Muxing Selection

Mux Selection
(PIO_ABCDSR1/2)

|

® PB8
TWI1
* PBO
AN
5 PB10
A K
. PB11
4
o PBO
TWI2 1
PB1

Atmel SAM G51 [DATASHEET] 28

11209C-ATARM-20-Dec-13

9. Real-Time Event Management

The events generated by peripherals are designed to be directly routed to peripherals managing/using these events
without processor intervention. Peripherals receiving events contain logic by which to select the one required.

9.1 Embedded Characteristics
e Timers, IOs and RTC peripherals generate event triggers which are directly routed to event managers, such as the
ADC, to start measurement/conversion without processor intervention.

e UART, USART, SPI, TWI and ADC also generate event triggers directly connected to the Peripheral DMA
Controller (PDC) for data transfer without processor intervention.

e PMC security events (clock failure detection) can be programmed to switch the MCK on a reliable main RC internal
clock without processor intervention.

9.2 Real-Time Event Mapping

Table 9-1. Real-time Event Mapping List
Event Generator Event Manager Function
10 (WKUPO/1) General Purpose Backup Register Security / Immediate GPBR clear (asynchronous) on tamper
(GPBR) detection through WKUPO/1 IO pins
Power Management PMC Safety / Automatic switch to reliable main RC oscillator in case
Controller (PMC) of main crystal clock failure
o Trigger for measurement.
10 (ADTRG) Analog-to-Digital Converter (ADC) o
Selection in ADC module.
Trigger for measurement.
TC Output O ADC o
Selection in ADC module.
Trigger for measurement.
TC Output 1 ADC o
Selection in ADC module.
Trigger for measurement.
TC Output 2 ADC o
Selection in ADC module.
Trigger for measurement.
RTCOUTO ADC .
Selection in ADC module.
Trigger for measurement.
RTCOUT1 ADC o
Selection in ADC module.
Trigger for measurement.
RTTINC ADC o
Selection in ADC module.
UART PDC Triggers 1 word transfer
USART PDC Triggers 1 word transfer
TWIO/1/2 PDC Triggers 1 word transfer
ADC PDC Triggers 1 word transfer
Timer Counter PDC Triggers 1 word transfer
SPI PDC Triggers 1 word transfer

Atmel SAM G51 [DATASHEET] 29

11209C-ATARM-20-Dec-13

10. ARM Cortex-M4 Processor

10.1 Description

The Cortex-M4 processor is a high performance 32-bit processor designed for the microcontroller market. It offers
significant benefits to developers, including outstanding processing performance combined with fast interrupt handling,
enhanced system debug with extensive breakpoint and trace capabilities, efficient processor core, system and
memories, ultra-low power consumption with integrated sleep modes, and platform security robustness, with integrated
memory protection unit (MPU).

The Cortex-M4 processor is built on a high-performance processor core, with a 3-stage pipeline Harvard architecture,
making it ideal for demanding embedded applications. The processor delivers exceptional power efficiency through an
efficient instruction set and extensively optimized design, providing high-end processing hardware including IEEE754-
compliant single-precision floating-point computation, a range of single-cycle and SIMD multiplication and multiply-with-
accumulate capabilities, saturating arithmetic and dedicated hardware division.

To facilitate the design of cost-sensitive devices, the Cortex-M4 processor implements tightly-coupled system
components that reduce processor area while significantly improving interrupt handling and system debug capabilities.
The Cortex-M4 processor implements a version of the Thumb® instruction set based on Thumb-2 technology, ensuring
high code density and reduced program memory requirements. The Cortex-M4 instruction set provides the exceptional
performance expected of a modern 32-bit architecture, with the high code density of 8-bit and 16-bit microcontrollers.

The Cortex-M4 processor closely integrates a configurable NVIC, to deliver industry-leading interrupt performance. The
NVIC includes a non-maskable interrupt (NMI), and provides up to 256 interrupt priority levels. The tight integration of the
processor core and NVIC provides fast execution of interrupt service routines (ISRs), dramatically reducing the interrupt
latency. This is achieved through the hardware stacking of registers, and the ability to suspend load-multiple and store-

multiple operations. Interrupt handlers do not require wrapping in assembler code, removing any code overhead from the
ISRs. A tail-chain optimization also significantly reduces the overhead when switching from one ISR to another.

To optimize low-power designs, the NVIC integrates with the sleep modes, that include a deep sleep function that
enables the entire device to be rapidly powered down while still retaining program state.

10.1.1 System Level Interface

The Cortex-M4 processor provides multiple interfaces using AMBA® technology to provide high speed, low latency
memory accesses. It supports unaligned data accesses and implements atomic bit manipulation that enables faster
peripheral controls, system spinlocks and thread-safe Boolean data handling.

The Cortex-M4 processor has a Memory Protection Unit (MPU) that provides fine grain memory control, enabling
applications to utilize multiple privilege levels, separating and protecting code, data and stack on a task-by-task basis.
Such requirements are becoming critical in many embedded applications such as automotive.

10.1.2 Integrated Configurable Debug

The Cortex-M4 processor implements a complete hardware debug solution. This provides high system visibility of the
processor and memory through either a traditional JTAG port or a 2-pin Serial Wire Debug (SWD) port that is ideal for
microcontrollers and other small package devices.

For system trace the processor integrates an Instrumentation Trace Macrocell (ITM) alongside data watchpoints and a
profiling unit. To enable simple and cost-effective profiling of the system events these generate, a Serial Wire Viewer
(SWV) can export a stream of software-generated messages, data trace, and profiling information through a single pin.

The Flash Patch and Breakpoint Unit (FPB) provides up to eight hardware breakpoint comparators that debuggers can
use. The comparators in the FPB also provide remap functions of up to eight words in the program code in the CODE
memory region. This enables applications stored on a non-erasable, ROM-based microcontroller to be patched if a small
programmable memory, for example flash, is available in the device. During initialization, the application in ROM detects,
from the programmable memory, whether a patch is required. If a patch is required, the application programs the FPB to
remap a number of addresses. When those addresses are accessed, the accesses are redirected to a remap table
specified in the FPB configuration, which means the program in the non-modifiable ROM can be patched.

Atmel SAM G51 [DATASHEET] 30

11209C-ATARM-20-Dec-13

10.2 Embedded Characteristics

Tight integration of system peripherals reduces area and development costs
Thumb instruction set combines high code density with 32-bit performance
IEEE754-compliant single-precision FPU

Code-patch ability for ROM system updates

Power control optimization of system components

Integrated sleep modes for low power consumption

Fast code execution permits slower processor clock or increases sleep mode time
Hardware division and fast digital-signal-processing oriented multiply accumulate
Saturating arithmetic for signal processing

Deterministic, high-performance interrupt handling for time-critical applications
Memory Protection Unit (MPU) for safety-critical applications

Extensive debug and trace capabilities:

e Serial Wire Debug and Serial Wire Trace reduce the number of pins required for debugging, tracing, and
code profiling.

10.3 Block Diagram

Figure 10-1. Typical Cortex-M4 Implementation

Cortex-M4
Processor FPU
NVIC [P
Processor
Core
Debug Memo Serial
4—1—P| Access ory Wire P
Protection Unit)
Port ¢ ¢ Viewer
Flash Data
Patch Watchpoints|
Bus Matrix
Code SRAM and
Interface Peripheral Interface
A A
y v

Atmel SAM G51 [DATASHEET] 31

11209C-ATARM-20-Dec-13

10.4 Cortex-M4 Models

10.4.1 Programmers Model

This section describes the Cortex-M4 programmers model. In addition to the individual core register descriptions, it
contains information about the processor modes and privilege levels for software execution and stacks.

10.4.1.1 Processor Modes and Privilege Levels for Software Execution

The processor modes are:
e Thread mode
Used to execute application software. The processor enters the Thread mode when it comes out of reset.
e Handler mode
Used to handle exceptions. The processor returns to the Thread mode when it has finished exception processing.

The privilege levels for software execution are:
e Unprivileged
The software:
e Has limited access to the MSR and MRS instructions, and cannot use the CPS instruction
e Cannot access the System Timer, NVIC, or System Control Block
e Might have a restricted access to memory or peripherals.
Unprivileged software executes at the unprivileged level.
e Privileged
The software can use all the instructions and has access to all resources. Privileged software executes at the
privileged level.

In Thread mode, the Control Register controls whether the software execution is privileged or unprivileged, see “Control
Register” . In Handler mode, software execution is always privileged.

Only privileged software can write to the Control Register to change the privilege level for software execution in Thread
mode. Unprivileged software can use the SVC instruction to make a supervisor call to transfer control to privileged
software.

10.4.1.2 Stacks

The processor uses a full descending stack. This means the stack pointer holds the address of the last stacked item in
memory When the processor pushes a new item onto the stack, it decrements the stack pointer and then writes the item
to the new memory location. The processor implements two stacks, the main stack and the process stack, with a pointer
for each held in independent registers, see “Stack Pointer” .

In Thread mode, the Control Register controls whether the processor uses the main stack or the process stack, see
“Control Register” .

In Handler mode, the processor always uses the main stack.

The options for processor operations are:

Table 10-1. Summary of processor mode, execution privilege level, and stack use options

Processor Privilege Level for

Mode Used to Execute Software Execution Stack Used

Thread Applications Privileged or unprivileged™ | Main stack or process stack®
Handler Exception handlers Always privileged Main stack

Note: 1. See “Control Register”.

Atmel SAM G51 [DATASHEET] 32

11209C-ATARM-20-Dec-13

10.4.1.3 Core Registers

Figure 10-2. Processor Core Registers
e N
RO
R1
R2
R3
Low registers
R4
R5
R6 General-purpose registers
R7
>_
R8
R9
High registers R10
R11
R12
. N— —
Stack Pointer SP (R13) H MSP* *Banked version of SP
Link Register LR (R14)
Program Counter PC (R15)
PSR Program status register
PRIMASK
FAULTMASK Exception mask registers Special registers
BASEPRI
CONTROL CONTROL register
Table 10-2. Core Processor Registers
Required
Register Name Access® Privilege® Reset
General-purpose registers RO-R12 Read/Write Either Unknown
Stack Pointer MSP Read/Write Privileged See description
Stack Pointer PSP Read/Write Either Unknown
Link Register LR Read/Write Either OXFFFFFFFF
Program Counter PC Read/Write Either See description
Program Status Register PSR Read/Write Privileged 0x01000000
Application Program Status Register APSR Read/Write Either 0x00000000
Interrupt Program Status Register IPSR Read-only Privileged 0x00000000
Execution Program Status Register EPSR Read-only Privileged 0x01000000
Priority Mask Register PRIMASK Read/Write Privileged 0x00000000
Fault Mask Register FAULTMASK Read/Write Privileged 0x00000000
Base Priority Mask Register BASEPRI Read/Write Privileged 0x00000000
Control Register CONTROL Read/Write Privileged 0x00000000

Atmel

SAM G51 [DATASHEET]

11209C-ATARM-20-Dec-13

33

Notes: 1. Describes access type during program execution in thread mode and Handler mode. Debug access can differ.
2. An entry of Either means privileged and unprivileged software can access the register.
10.4.1.4 General-purpose Registers

RO-R12 are 32-bit general-purpose registers for data operations.

10.4.1.5 Stack Pointer

The Stack Pointer (SP) is register R13. In Thread mode, bit[1] of the Control Register indicates the stack pointer to use:
e 0= Main Stack Pointer (MSP). This is the reset value.
e 1 =Process Stack Pointer (PSP).

On reset, the processor loads the MSP with the value from address 0x00000000.

10.4.1.6 Link Register
The Link Register (LR) is register R14. It stores the return information for subroutines, function calls, and exceptions. On
reset, the processor loads the LR value OXFFFFFFFF.

10.4.1.7 Program Counter

The Program Counter (PC) is register R15. It contains the current program address. On reset, the processor loads the
PC with the value of the reset vector, which is at address 0x00000004. Bit[0] of the value is loaded into the EPSR T-bit at
reset and must be 1.

Atmel SAM G51 [DATASHEET] 34

11209C-ATARM-20-Dec-13

10.4.1.8 Program Status Register

Name: PSR

Access: Read/Write

Reset: 0x000000000
31 30 29 28 27 26 25 24

| N Z C \ | Q | ICIIT T |
23 22 21 20 19 18 17 16
15 14 13 12 11 10 9 8

| ICINT - ISR_NUMBER |
7 6 5 4 3 2 1 0

| ISR_NUMBER |

The Program Status Register (PSR) combines:
« Application Program Status Register (APSR)
* Interrupt Program Status Register (IPSR)
» Execution Program Status Register (EPSR).
These registers are mutually exclusive bitfields in the 32-bit PSR.

The PSR accesses these registers individually or as a combination of any two or all three registers, using the register name as an
argument to the MSR or MRS instructions. For example:

* Read of all the registers using PSR with the MRS instruction
» Write to the APSR N, Z, C, V and Q bits using APSR_nzcvqg with the MSR instruction.

The PSR combinations and attributes are:

Name Access Combination

PSR Read/Write™® APSR, EPSR, and IPSR
IEPSR Read-only EPSR and IPSR

IAPSR Read/Write™ APSR and IPSR
EAPSR Read/Write® APSR and EPSR

Notes: 1. The processor ignores writes to the IPSR bits.
2. Reads of the EPSR bits return zero, and the processor ignores writes to these bits.

See the instruction descriptions “MRS” and “MSR” for more information about how to access the program status registers.

Atmel SAM G51 [DATASHEET] 35

11209C-ATARM-20-Dec-13

10.4.1.9 Application Program Status Register

Name: APSR

Access: Read/Write

Reset: 0x000000000
31 30 29 28 27 26 25 24

| N Z C \Y | Q | - |
23 22 21 20 19 18 17 16

| - | GE[3:0] |
15 14 13 12 11 10 9 8
7 6 5 4 3 2 1 0

The APSR contains the current state of the condition flags from previous instruction executions.

N: Negative Flag

o

: Operation result was positive, zero, greater than, or equal

[EEY

: Operation result was negative or less than.

Z: Zero Flag
: Operation result was not zero

= O

: Operation result was zero.

» C: Carry or Borrow Flag
Carry or borrow flag:
0: Add operation did not result in a carry bit or subtract operation resulted in a borrow bit

1: Add operation resulted in a carry bit or subtract operation did not result in a borrow bit.

* V: Overflow Flag
0: Operation did not result in an overflow

1: Operation resulted in an overflow.

» Q: DSP Overflow and Saturation Flag

Sticky saturation flag:

0: Indicates that saturation has not occurred since reset or since the bit was last cleared to zero
1: Indicates when an SSAT or USAT instruction results in saturation.

This bit is cleared to zero by software using an MRS instruction.

* GE[19:16]: Greater Than or Equal Flags
See “SEL” for more information.

Atmel SAM G51 [DATASHEET] 36

11209C-ATARM-20-Dec-13

10.4.1.10 Interrupt Program Status Register

Name: IPSR
Access: Read/Write
Reset: 0x000000000
31 30 29 28 27 26 25 24
23 22 21 20 19 18 17 16
15 14 13 12 11 10 9 8
| - ISR_NUMBER |
7 6 5 4 3 2 1 0

| ISR_NUMBER |

The IPSR contains the exception type number of the current Interrupt Service Routine (ISR).

* ISR_NUMBER: Number of the Current Exception
0 = Thread mode

1 = Reserved

2 =NMI

3 = Hard fault

4 = Memory management fault
5 = Bus fault

6 = Usage fault

7-10 = Reserved

11 =Ssvcall

12 = Reserved for Debug

13 = Reserved

14 = PendSV

15 = SysTick

16 = IRQO

61 = IRQ46

See “Exception Types” for more information.

Atmel SAM G51 [DATASHEET] 37

11209C-ATARM-20-Dec-13

10.4.1.11 Execution Program Status Register

Name: EPSR

Access: Read/Write

Reset: 0x000000000
31 30 29 28 27 26 25 24

| - ICIIT T |
23 22 21 20 19 18 17 16
15 14 13 12 11 10 9 8

| ICIIT - |

7 6 5 4 3 2 1 0

The EPSR contains the Thumb state bit, and the execution state bits for either the If-Then (IT) instruction, or the Interruptible-
Continuable Instruction (ICI) field for an interrupted load multiple or store multiple instruction.

Attempts to read the EPSR directly through application software using the MSR instruction always return zero. Attempts to write
the EPSR using the MSR instruction in the application software are ignored. Fault handlers can examine the EPSR value in the
stacked PSR to indicate the operation that is at fault. See “Exception Entry and Return”

* ICI: Interruptible-continuable Instruction
When an interrupt occurs during the execution of an LDM, STM, PUSH, POP, VLDM, VSTM, VPUSH,
or VPOP instruction, the processor:
— Stops the load multiple or store multiple instruction operation temporarily
— Stores the next register operand in the multiple operation to EPSR bits[15:12].
After servicing the interrupt, the processor:
— Returns to the register pointed to by bits[15:12]
— Resumes the execution of the multiple load or store instruction.
When the EPSR holds the ICI execution state, bits[26:25,11:10] are zero.

e |T: If-Then Instruction
Indicates the execution state bits of the IT instruction.

The If-Then block contains up to four instructions following an IT instruction. Each instruction in the block is conditional. The con-
ditions for the instructions are either all the same, or some can be the inverse of others. See “IT” for more information.

e T: Thumb State

The Cortex-M4 processor only supports the execution of instructions in Thumb state. The following can clear the T bit to O:
— Instructions BLX, BX and POP{PC}
— Restoration from the stacked xPSR value on an exception return
— Bit[0] of the vector value on an exception entry or reset.

Attempting to execute instructions when the T bit is O results in a fault or lockup. See “Lockup” for more information.

Atmel SAM G51 [DATASHEET] 38

11209C-ATARM-20-Dec-13

10.4.1.12 Exception Mask Registers

The exception mask registers disable the handling of exceptions by the processor. Disable exceptions where they might
impact on timing critical tasks.

To access the exception mask registers use the MSR and MRS instructions, or the CPS instruction to change the value
of PRIMASK or FAULTMASK. See “MRS”, “MSR” , and “CPS” for more information.

10.4.1.13 Priority Mask Register

Name: PRIMASK

Access: Read/Write

Reset: 0x000000000
31 30 29 28 27 26 25 24
23 22 21 20 19 18 17 16
15 14 13 12 11 10 9 8
7 6 5 4 3 2 1 0

| - PRIMASK |

The PRIMASK register prevents the activation of all exceptions with a configurable priority.

« PRIMASK
0: No effect

1: Prevents the activation of all exceptions with a configurable priority.

Atmel SAM G51 [DATASHEET] 39

11209C-ATARM-20-Dec-13

10.4.1.14 Fault Mask Register

Name: FAULTMASK

Access: Read/Write

Reset: 0x000000000
31 30 29 28 27 26 25 24
23 22 21 20 19 18 17 16
15 14 13 12 11 10 9 8
7 6 5 4 3 2 1 0

| - | FAULTMASK |

The FAULTMASK register prevents the activation of all exceptions except for Non-Maskable Interrupt (NMI).

* FAULTMASK

0: No effect.

1: Prevents the activation of all exceptions except for NMI.

The processor clears the FAULTMASK bit to 0 on exit from any exception handler except the NMI handler.

Atmel SAM G51 [DATASHEET] 40

11209C-ATARM-20-Dec-13

10.4.1.15 Base Priority Mask Register

Name: BASEPRI

Access: Read/Write

Reset: 0x000000000
31 30 29 28 27 26 25 24
23 22 21 20 19 18 17 16
15 14 13 12 11 10 9 8
7 6 5 4 3 2 1 0

| BASEPRI |

The BASEPRI register defines the minimum priority for exception processing. When BASEPRI is set to a nonzero value, it pre-
vents the activation of all exceptions with same or lower priority level as the BASEPRI value.

* BASEPRI

Priority mask bits:

0x0000: No effect

Nonzero: Defines the base priority for exception processing

The processor does not process any exception with a priority value greater than or equal to BASEPRI.

This field is similar to the priority fields in the interrupt priority registers. The processor implements only bits[7:4] of this field,
bits[3:0] read as zero and ignore writes. See “Interrupt Priority Registers” for more information. Remember that higher priority
field values correspond to lower exception priorities.

Atmel SAM G51 [DATASHEET] 41

11209C-ATARM-20-Dec-13

10.4.1.16 Control Register

Name: CONTROL

Access: Read/Write

Reset: 0x000000000
31 30 29 28 27 26 25 24
23 22 21 20 19 18 17 16
15 14 13 12 11 10 9 8
7 6 5 4 3 2 1 0

| - | FPCA | SPSEL | nPRIV |

The Control Register controls the stack used and the privilege level for software execution when the processor is in Thread mode
and indicates whether the FPU state is active.

* FPCA: Floating-point Context Active

Indicates whether the floating-point context is currently active:
0: No floating-point context active.

1: Floating-point context active.

The Cortex-M4 uses this bit to determine whether to preserve the floating-point state when processing an exception.

» SPSEL: Active Stack Pointer
Defines the current stack:

0: MSP is the current stack pointer.
1: PSP is the current stack pointer.

In Handler mode, this bit reads as zero and ignores writes. The Cortex-M4 updates this bit automatically on exception return.

* nPRIV: Thread Mode Privilege Level
Defines the Thread mode privilege level:

0: Privileged.

1: Unprivileged.

Handler mode always uses the MSP, so the processor ignores explicit writes to the active stack pointer bit of the Control Register
when in Handler mode. The exception entry and return mechanisms update the Control Register based on the EXC_RETURN
value.

In an OS environment, ARM recommends that threads running in Thread mode use the process stack, and the kernel and excep-
tion handlers use the main stack.

By default, the Thread mode uses the MSP. To switch the stack pointer used in Thread mode to the PSP, either:
» Use the MSR instruction to set the Active stack pointer bit to 1, see “MSR", or
» Perform an exception return to Thread mode with the appropriate EXC_RETURN value, see Table 10-10.

Note: When changing the stack pointer, the software must use an ISB instruction immediately after the MSR instruction.
This ensures that instructions after the ISB execute using the new stack pointer. See “ISB” .

Atmel SAM G51 [DATASHEET] 42

11209C-ATARM-20-Dec-13

10.4.1.17 Exceptions and Interrupts

The Cortex-M4 processor supports interrupts and system exceptions. The processor and the Nested Vectored Interrupt
Controller (NVIC) prioritize and handle all exceptions. An exception changes the normal flow of software control. The
processor uses the Handler mode to handle all exceptions except for reset. See “Exception Entry” and “Exception
Return” for more information.

The NVIC registers control interrupt handling. See “Nested Vectored Interrupt Controller (NVIC)” for more information.

10.4.1.18 Data Types

The processor supports the following data types:
e 32-bit words
e 16-bit halfwords
e 8-bit bytes
e The processor manages all data memory accesses as little-endian. Instruction memory and Private Peripheral Bus
(PPB) accesses are always little-endian. See “Memory Regions, Types and Attributes” for more information.

10.4.1.19 Cortex Microcontroller Software Interface Standard (CMSIS)

For a Cortex-M4 microcontroller system, the Cortex Microcontroller Software Interface Standard (CMSIS) defines:
e A common way to:
e Access peripheral registers
e Define exception vectors
e The names of:
e The registers of the core peripherals
e The core exception vectors
e A device-independent interface for RTOS kernels, including a debug channel.

The CMSIS includes address definitions and data structures for the core peripherals in the Cortex-M4 processor.

The CMSIS simplifies the software development by enabling the reuse of template code and the combination of CMSIS-
compliant software components from various middleware vendors. Software vendors can expand the CMSIS to include
their peripheral definitions and access functions for those peripherals.

This document includes the register names defined by the CMSIS, and gives short descriptions of the CMSIS functions
that address the processor core and the core peripherals.

Note: This document uses the register short names defined by the CMSIS. In a few cases, these differ from the archi-
tectural short names that might be used in other documents.

The following sections give more information about the CMSIS:
e Section 10.5.3 "Power Management Programming Hints”
e Section 10.6.2 "CMSIS Functions”

e Section 10.8.2.1 "NVIC Programming Hints” .

Atmel SAM G51 [DATASHEET] 43

11209C-ATARM-20-Dec-13

10.4.2 Memory Model

This section describes the processor memory map, the behavior of memory accesses, and the bit-banding features. The
processor has a fixed memory map that provides up to 4GB of addressable memory.

Figure 10-3. Memory Map

OxFFFFFFFF
Vendor-specific 511 MB
memory
0xE0100000
i i OXEOOFFFFF
Prlvatebpuesrlpheral 1.0 MB
0xEO000 0000
0x DFFFFFFF
External device 1.0 GB
0xA0000000
OX9FFFFFFF
Ox43FFFFFF External RAM 1.0 GB
32 MB Bit-band alias
0x60000000
0x42000000 OX5FFFFFFF
O0x400FFFFF —— Peripheral 0.5GB
it-band region
0x40000000 0x40000000
Ox23FFFFFF Ox3FFFFFFF
32 MB Bit-band alias SRAM 0.56B
0x20000000
0x22000000 Ox1FFFFFFF
Code 0.5GB
0x200FFFFF - -
0x20000000 L MB Bitband region 0x00000000

The regions for SRAM and peripherals include bit-band regions. Bit-banding provides atomic operations to bit data, see
“Bit-banding” .
The processor reserves regions of the Private peripheral bus (PPB) address range for core peripheral registers.
This memory mapping is generic to ARM Cortex-M4 products. To get the specific memory mapping of this product, refer
to the Memories section of the datasheet.

10.4.2.1 Memory Regions, Types and Attributes

The memory map and the programming of the MPU split the memory map into regions. Each region has a defined
memory type, and some regions have additional memory attributes. The memory type and attributes determine the
behavior of accesses to the region.

Memory Types

Atmel SAM G51 [DATASHEET] 44

11209C-ATARM-20-Dec-13

Normal

The processor can re-order transactions for efficiency, or perform speculative reads.

Device

The processor preserves transaction order relative to other transactions to Device or Strongly-ordered memory.
Strongly-ordered

The processor preserves transaction order relative to all other transactions.

The different ordering requirements for Device and Strongly-ordered memory mean that the memory system can buffer a
write to Device memory, but must not buffer a write to Strongly-ordered memory.

Additional Memory Attributes

Shareable

For a shareable memory region, the memory system provides data synchronization between bus masters in a
system with multiple bus masters, for example, a processor with a DMA controller.

Strongly-ordered memory is always shareable.

If multiple bus masters can access a non-shareable memory region, the software must ensure data coherency
between the bus masters.

Execute Never (XN)

Means the processor prevents instruction accesses. A fault exception is generated only on execution of an
instruction executed from an XN region.

10.4.2.2 Memory System Ordering of Memory Accesses

For most memory accesses caused by explicit memory access instructions, the memory system does not guarantee that
the order in which the accesses complete matches the program order of the instructions, providing this does not affect
the behavior of the instruction sequence. Normally, if correct program execution depends on two memory accesses
completing in program order, the software must insert a memory barrier instruction between the memory access
instructions, see “Software Ordering of Memory Accesses” .

However, the memory system does guarantee some ordering of accesses to Device and Strongly-ordered memory. For
two memory access instructions Al and A2, if A1 occurs before A2 in program order, the ordering of the memory
accesses is described below.

Table 10-3. Ordering of the Memory Accesses Caused by Two Instructions

A2 Device Access
Strongly-

Normal Non- ordered
Al Access shareable Shareable Access
Normal Access - - - -
Device access, non-shareable - < - <
Device access, shareable - — < <
Strongly-ordered access - < < <

Where:

<

Atmel

Means that the memory system does not guarantee the ordering of the accesses.

Means that accesses are observed in program order, that is, Al is always observed
before A2.

SAM G51 [DATASHEET] 45

11209C-ATARM-20-Dec-13

10.4.2.3 Behavior of Memory Accesses

The following table describes the behavior of accesses to each region in the memory map.

Table 10-4. Memory Access Behavior

Memory
Address Range Memory Region Type XN | Description
OX00000000—OX1EEFFEEE | Code Normal® _ Executable region for program code. Data can also be

put here.

Executable region for data. Code can also be put here.
0x20000000-0x3FFFFFFF | SRAM Normal ™ — | This region includes bit band and bit band alias areas,
see Table 10-6.

This region includes bit band and bit band alias areas,

0x40000000-0x5FFFFFFF | Peripheral Device® | XN see Table 10-6.

0x60000000-0x9FFFFFFF | External RAM Normal ™) — | Executable region for data

0xA0000000—-0XDFFFFFFF | External device Device™ | XN | External Device memory

0XE0000000—OXEQOFFFFF | Private Peripheral Bus f:;"er;gg’[l) XN Igilstr;elgti%‘di(r_‘c'“des the NVIC, system timer, and system
0XE0100000-0xFFFFFFFF | Reserved Device™ | XN | Reserved

Note: 1. See “Memory Regions, Types and Attributes” for more information.

The Code, SRAM, and external RAM regions can hold programs. However, ARM recommends that programs always use
the Code region. This is because the processor has separate buses that enable instruction fetches and data accesses to
occur simultaneously.

The MPU can override the default memory access behavior described in this section. For more information, see “Memory
Protection Unit (MPU)” .

Additional Memory Access Constraints For Shared Memory

When a system includes shared memory, some memory regions have additional access constraints, and some regions
are subdivided, as Table 10-5 shows.

Table 10-5. Memory Region Shareability Policies

Address Range Memory Region Memory Type Shareability
0x00000000-0x1FFFFFFF Code Normal® -
0x20000000-0x3FFFFFFF SRAM Normal® -
0x40000000-0X5FFFFFFF Peripheral Device™® -
0x60000000-0x7FFFFFFF
External RAM Normal® -
0x80000000-0x9FFFFFFF
0xA0000000-0xBFFFFFFF Shareable™®
External device Device™
0xC0000000—-0XDFFFFFFF Non-shareable ™
0XE0000000—0XEQOFFFFF Private Peripheral Bus Strongly-ordered™® Shareable®
0XE0100000-0xFFFFFFFF Vendor-specific device Device™® -

Notes: 1. See “Memory Regions, Types and Attributes” for more information.
Instruction Prefetch and Branch Prediction

The Cortex-M4 processor:

Atmel SAM G51 [DATASHEET] 46

11209C-ATARM-20-Dec-13

e Prefetches instructions ahead of execution
e Speculatively prefetches from branch target addresses.

10.4.2.4 Software Ordering of Memory Accesses
The order of instructions in the program flow does not always guarantee the order of the corresponding memory
transactions. This is because:

e The processor can reorder some memory accesses to improve efficiency, providing this does not affect the
behavior of the instruction sequence.

e The processor has multiple bus interfaces
e Memory or devices in the memory map have different wait states
e Some memory accesses are buffered or speculative.
“Memory System Ordering of Memory Accesses” describes the cases where the memory system guarantees the order

of memory accesses. Otherwise, if the order of memory accesses is critical, the software must include memory barrier
instructions to force that ordering. The processor provides the following memory barrier instructions:

DMB
The Data Memory Barrier (DMB) instruction ensures that outstanding memory transactions complete before subsequent
memory transactions. See “DMB” .

DSB
The Data Synchronization Barrier (DSB) instruction ensures that outstanding memory transactions complete before
subsequent instructions execute. See “DSB” .

ISB
The Instruction Synchronization Barrier (ISB) ensures that the effect of all completed memory transactions is
recognizable by subsequent instructions. See “ISB” .

MPU Programming

Use a DSB followed by an ISB instruction or exception return to ensure that the new MPU configuration is used by
subsequent instructions.

10.4.2.5 Bit-banding

A bit-band region maps each word in a bit-band alias region to a single bit in the bit-band region. The bit-band regions
occupy the lowest 1 MB of the SRAM and peripheral memory regions.
The memory map has two 32 MB alias regions that map to two 1 MB bit-band regions:

e Accesses to the 32 MB SRAM alias region map to the 1 MB SRAM bit-band region, as shown in Table 10-6.

e Accesses to the 32 MB peripheral alias region map to the 1 MB peripheral bit-band region, as shown in Table 10-
7.

Table 10-6. SRAM Memory Bit-banding Regions

Address Range Memory Region Instruction and Data Accesses

Direct accesses to this memory range behave as SRAM memory accesses,

0x20000000-0x200FFFFF | SRAM bit-band region but this region is also bit-addressable through bit-band alias.

Data accesses to this region are remapped to bit-band region. A write
0x22000000-0x23FFFFFF | SRAM bit-band alias operation is performed as read-modify-write. Instruction accesses are not
remapped.

Atmel SAM G51 [DATASHEET] 47

11209C-ATARM-20-Dec-13

Table 10-7. Peripheral Memory Bit-banding Regions

Address Range Memory Region Instruction and Data Accesses

Direct accesses to this memory range behave as peripheral memory

0x40000000-0x400FFFFF | Peripheral bit-band alias accesses, but this region is also bit-addressable through bit-band alias.

Data accesses to this region are remapped to bit-band region. A write
0x42000000-0x43FFFFFF | Peripheral bit-band region | operation is performed as read-modify-write. Instruction accesses are not
permitted.

Notes: 1. A word access to the SRAM or peripheral bit-band alias regions map to a single bit in the SRAM or peripheral bit-
band region.

2. Bit-band accesses can use byte, halfword, or word transfers. The bit-band transfer size matches the transfer size of
the instruction making the bit-band access.

The following formula shows how the alias region maps onto the bit-band region:
bit_word_offset = (byte_offset x 32) + (bit_nunber x 4)
bit_word_addr = bit_band_base + bit_word_offset
where:
e Bit_word_offset isthe position of the target bit in the bit-band memory region.
Bi t _word_addr is the address of the word in the alias memory region that maps to the targeted bit.
Bi t _band_base is the starting address of the alias region.
Byt e_of f set is the number of the byte in the bit-band region that contains the targeted bit.
Bi t _number is the bit position, 0-7, of the targeted bit.

Figure 10-4 shows examples of bit-band mapping between the SRAM bit-band alias region and the SRAM bit-band
region:
e The alias word at 0x23FFFFEO maps to bit[0] of the bit-band byte at 0Ox200FFFFF: 0x23FFFFEO = 0x22000000 +
(OXFFFFF*32) + (0%4).
e The alias word at 0x23FFFFFC maps to bit[7] of the bit-band byte at 0x200FFFFF: O0x23FFFFFC = 0x22000000 +
(OXFFFFF*32) + (7*4).
e The alias word at 0x22000000 maps to bit[0] of the bit-band byte at 0x20000000: 0x22000000 = 0x22000000 +
(0*32) + (0*4).
e The alias word at 0x2200001C maps to bit[7] of the bit-band byte at 0x20000000: 0x2200001C = 0x22000000+
(0*32) + (7*%4).

Atmel SAM G51 [DATASHEET] 48

11209C-ATARM-20-Dec-13

Figure 10-4. Bit-band Mapping

32 MB alias region

| oxesFrrrFC | oxasFrFFFs || 0x23FFFFF4 | Ox23FFFFFO | Ox23FFFFEC | Ox23FFFFE8 | Ox23FFFFE4 | Ox23FFFFEO |

°

°

°

I 0x2200001C I 0x22000018 0x22000014 0x22000010 | 0x2200000C | 0x22000008 0x22000004 I 0x22000000 I

1 MB SRAM bit-band region

‘76543210'765432107654321076543210

T T T 1 T 1
0x200FFFFF 0x200FFFFE 0x200FFFFD 0x200FFFFC
I — I — I — [

°
°

°

765432107654321076543210‘76543210’

U U U U
0x20000003 0x20000002 0x20000001 0x20000000
I — I — I — I —

Directly Accessing an Alias Region

Writing to a word in the alias region updates a single bit in the bit-band region.

Bit[O] of the value written to a word in the alias region determines the value written to the targeted bit in the bit-band

region. Writing a value with bit[0] set to 1 writes a 1 to the bit-band bit, and writing a value with bit[0] set to O writes a 0 to
the bit-band bit.

Bits[31:1] of the alias word have no effect on the bit-band bit. Writing 0x01 has the same effect as writing OxFF. Writing
0x00 has the same effect as writing OxOE.

Reading a word in the alias region:

e 0x00000000 indicates that the targeted bit in the bit-band region is set to 0

e (0x00000001 indicates that the targeted bit in the bit-band region is set to 1
Directly Accessing a Bit-band Region

“Behavior of Memory Accesses” describes the behavior of direct byte, halfword, or word accesses to the bit-band
regions.

10.4.2.6 Memory Endianness

The processor views memory as a linear collection of bytes numbered in ascending order from zero. For example, bytes
0-3 hold the first stored word, and bytes 4—7 hold the second stored word. “Little-endian Format” describes how words
of data are stored in memory.

Little-endian Format

In little-endian format, the processor stores the least significant byte of a word at the lowest-numbered byte, and the most
significant byte at the highest-numbered byte. For example:

Atmel SAM G51 [DATASHEET] 49

11209C-ATARM-20-Dec-13

Figure 10-5. Little-endian Format

Memory Register
7 0
31 2423 1615 8 7 0
Address A BO |[Isbyte B3 B2 B1 BO
A+1 B1
A+2 B2

A+3 B3 [msbyte

10.4.2.7 Synchronization Primitives

The Cortex-M4 instruction set includes pairs of synchronization primitives. These provide a non-blocking mechanism that
a thread or process can use to obtain exclusive access to a memory location. The software can use them to perform a
guaranteed read-modify-write memory update sequence, or for a semaphore mechanism.
A pair of synchronization primitives comprises:
A Load-exclusive Instruction, used to read the value of a memory location, requesting exclusive access to that
location.
A Store-Exclusive instruction, used to attempt to write to the same memory location, returning a status bit to a register.
If this bit is:

e 0 Itindicates that the thread or process gained exclusive access to the memory, and the write succeeds,

e 1:Itindicates that the thread or process did not gain exclusive access to the memory, and no write is performed.

The pairs of Load-Exclusive and Store-Exclusive instructions are:
e The word instructions LDREX and STREX
e The halfword instructions LDREXH and STREXH
e The byte instructions LDREXB and STREXB.

The software must use a Load-Exclusive instruction with the corresponding Store-Exclusive instruction.

To perform an exclusive read-modify-write of a memory location, the software must:
1. Use a Load-Exclusive instruction to read the value of the location.
2. Update the value, as required.
3. Use a Store-Exclusive instruction to attempt to write the new value back to the memory location
4. Test the returned status bit. If this bit is:

0: The read-modify-write completed successfully.

1: No write was performed. This indicates that the value returned at step 1 might be out of date. The software must
retry the read-modify-write sequence.
The software can use the synchronization primitives to implement a semaphore as follows:
1. Use a Load-Exclusive instruction to read from the semaphore address to check whether the semaphore is free.
2. If the semaphore is free, use a Store-Exclusive instruction to write the claim value to the semaphore address.

3. Ifthe returned status bit from step 2 indicates that the Store-Exclusive instruction succeeded then the software has
claimed the semaphore. However, if the Store-Exclusive instruction failed, another process might have claimed the
semaphore after the software performed the first step.

The Cortex-M4 includes an exclusive access monitor, that tags the fact that the processor has executed a Load-
Exclusive instruction. If the processor is part of a multiprocessor system, the system also globally tags the memory
locations addressed by exclusive accesses by each processor.

Atmel SAM G51 [DATASHEET] 50

11209C-ATARM-20-Dec-13

The processor removes its exclusive access tag if:

e |t executes a CLREX instruction

e |t executes a Store-Exclusive instruction, regardless of whether the write succeeds.

e An exception occurs. This means that the processor can resolve semaphore conflicts between different threads.
In a multiprocessor implementation:

e Executing a CLREX instruction removes only the local exclusive access tag for the processor

e Executing a Store-Exclusive instruction, or an exception, removes the local exclusive access tags, and all global

exclusive access tags for the processor.

For more information about the synchronization primitive instructions, see “LDREX and STREX” and “CLREX" .

10.4.2.8 Programming Hints for the Synchronization Primitives

ISO/IEC C cannot directly generate the exclusive access instructions. CMSIS provides intrinsic functions for generation
of these instructions:

Table 10-8. CMSIS Functions for Exclusive Access Instructions

Instruction CMSIS Function

LDREX uint32_t _ LDREXW (uint32_t *addr)

LDREXH uintlé_t LDREXH (uint16_t *addr)

LDREXB uint8_t__LDREXB (uint8_t *addr)

STREX uint32_t _ STREXW (uint32_t value, uint32_t *addr)
STREXH uint32_t __ STREXH (uint16_t value, uint16_t *addr)
STREXB uint32_t _ STREXB (uint8_t value, uint8_t *addr)
CLREX void __CLREX (void)

The actual exclusive access instruction generated depends on the data type of the pointer passed to the intrinsic
function. For example, the following C code generates the required LDREXB operation:
__ldrex((vol atile char *) OxFF);

10.4.3 Exception Model

This section describes the exception model.

10.4.3.1 Exception States
Each exception is in one of the following states:
Inactive

The exception is not active and not pending.
Pending

The exception is waiting to be serviced by the processor.

An interrupt request from a peripheral or from software can change the state of the corresponding interrupt to pending.
Active

An exception is being serviced by the processor but has not completed.

An exception handler can interrupt the execution of another exception handler. In this case, both exceptions are in the
active state.

Active and Pending

The exception is being serviced by the processor and there is a pending exception from the same source.

Atmel SAM G51 [DATASHEET] 51

11209C-ATARM-20-Dec-13

10.4.3.2 Exception Types

The exception types are:
Reset

Reset is invoked on power up or a warm reset. The exception model treats reset as a special form of exception. When
reset is asserted, the operation of the processor stops, potentially at any point in an instruction. When reset is
deasserted, execution restarts from the address provided by the reset entry in the vector table. Execution restarts as
privileged execution in Thread mode.

Non Maskable Interrupt (NMI)

A non maskable interrupt (NMI) can be signalled by a peripheral or triggered by software. This is the highest priority
exception other than reset. It is permanently enabled and has a fixed priority of -2.
NMIs cannot be:
e Masked or prevented from activation by any other exception.
e Preempted by any exception other than Reset.
Hard Fault

A hard fault is an exception that occurs because of an error during exception processing, or because an exception
cannot be managed by any other exception mechanism. Hard Faults have a fixed priority of -1, meaning they have higher
priority than any exception with configurable priority.

Memory Management Fault (MemManage)

A Memory Management Fault is an exception that occurs because of a memory protection related fault. The MPU or the
fixed memory protection constraints determines this fault, for both instruction and data memory transactions. This fault is
used to abort instruction accesses to Execute Never (XN) memory regions, even if the MPU is disabled.

Bus Fault

A Bus Fault is an exception that occurs because of a memory related fault for an instruction or data memory transaction.
This might be from an error detected on a bus in the memory system.

Usage Fault

A Usage Fault is an exception that occurs because of a fault related to an instruction execution. This includes:
e An undefined instruction
e Anillegal unaligned access
e Aninvalid state on instruction execution
e An error on exception return.

The following can cause a Usage Fault when the core is configured to report them:
e An unaligned address on word and halfword memory access
e Adivision by zero.
SVCall

A supervisor call (SVC) is an exception that is triggered by the SVC instruction. In an OS environment, applications can
use SVC instructions to access OS kernel functions and device drivers.

PendSVv
PendSV is an interrupt-driven request for system-level service. In an OS environment, use PendSV for context switching
when no other exception is active.

SysTick
A SysTick exception is an exception the system timer generates when it reaches zero. Software can also generate a
SysTick exception. In an OS environment, the processor can use this exception as system tick.

Interrupt (IRQ)

Atmel SAM G51 [DATASHEET] 52

11209C-ATARM-20-Dec-13

A interrupt, or IRQ, is an exception signalled by a peripheral, or generated by a software request. All interrupts are
asynchronous to instruction execution. In the system, peripherals use interrupts to communicate with the processor.

Table 10-9. Properties of the Different Exception Types

Exception Vector Address

Number® Irqg Number® | Exception Type | Priority or Offset® Activation

1 - Reset -3, the highest | 0x00000004 Asynchronous
2 -14 NMI -2 0x00000008 Asynchronous
3 -13 Hard fault -1 0x0000000C -

4 -12 Memory Configurable® | 0x00000010 Synchronous

management fault

Synchronous when precise,

5 -11 Bus fault Configurable® | 0x00000014 asynchronous when imprecise
6 -10 Usage fault Configurable® | 0x00000018 Synchronous

7-10 - - - Reserved -

11 -5 Svcall Configurable® | 0x0000002C Synchronous

12-13 - - - Reserved -

14 -2 PendSV Configurable® | 0x00000038 Asynchronous

15 -1 SysTick Configurable® | 0x0000003C Asynchronous

16 and above | 0 and above Interrupt (IRQ) Configurable® | 0x00000040 and above® | Asynchronous

Notes: 1. To simplify the software layer, the CMSIS only uses IRQ numbers and therefore uses negative values for exceptions
other than interrupts. The IPSR returns the Exception number, see “Interrupt Program Status Register” .

See “Vector Table” for more information
See “System Handler Priority Registers”
See “Interrupt Priority Registers”
Increasing in steps of 4.

a M eDn

For an asynchronous exception, other than reset, the processor can execute another instruction between when the
exception is triggered and when the processor enters the exception handler.
Privileged software can disable the exceptions that Table 10-9 shows as having configurable priority, see:

e “System Handler Control and State Register”

e ‘“Interrupt Clear-enable Registers” .

For more information about hard faults, memory management faults, bus faults, and usage faults, see “Fault Handling” .

10.4.3.3 Exception Handlers

The processor handles exceptions using:
e Interrupt Service Routines (ISRs)
Interrupts IRQO to IRQ46 are the exceptions handled by ISRs.
e Fault Handlers
Hard fault, memory management fault, usage fault, bus fault are fault exceptions handled by the fault handlers.
e System Handlers
NMI, PendSV, SVCall SysTick, and the fault exceptions are all system exceptions that are handled by system
handlers.

Atmel SAM G51 [DATASHEET] 53

11209C-ATARM-20-Dec-13

10.4.3.4 Vector Table

The vector table contains the reset value of the stack pointer, and the start addresses, also called exception vectors, for
all exception handlers. Figure 10-6 shows the order of the exception vectors in the vector table. The least-significant bit
of each vector must be 1, indicating that the exception handler is Thumb code.

Figure 10-6. Vector Table

Exception number IRQ number Offset Vector
255 239 IRQ239
0x03FC
0x004C
18 2 IRQ2
0x0048
17 1 IRQ1
0x0044
16 0 IRQO
0x0040
15 -1 SysTick
0x003C
14 -2 PendSV
0x0038
13 Reserved
12 Reserved for Debug
11 -5 SVCall
0x002C
10
9
Reserved
8
7
6 -10 Usage fault
0x0018
5 -11 Bus fault
0x0014
4 -12 Memory management fault
0x0010
3 -13 Hard fault
0x000C
2 -14 NMI
0x0008
1 Reset
0x0004
Initial SP value

0x0000

On system reset, the vector table is fixed at address 0x00000000. Privileged software can write to the SCB_VTOR to
relocate the vector table start address to a different memory location, in the range 0x00000080 to 0x3FFFFF80, see
“Vector Table Offset Register” .

10.4.3.5 Exception Priorities
As Table 10-9 shows, all exceptions have an associated priority, with:
e A lower priority value indicating a higher priority
e Configurable priorities for all exceptions except Reset, Hard fault and NMI.
If the software does not configure any priorities, then all exceptions with a configurable priority have a priority of 0. For

information about configuring exception priorities see “System Handler Priority Registers” , and “Interrupt Priority
Registers” .

Note: Configurable priority values are in the range 0—15. This means that the Reset, Hard fault, and NMI exceptions,
with fixed negative priority values, always have higher priority than any other exception.

For example, assigning a higher priority value to IRQ[0] and a lower priority value to IRQ[1] means that IRQ[1] has higher
priority than IRQ[O]. If both IRQ[1] and IRQ[O] are asserted, IRQ[1] is processed before IRQ[O].

Atmel SAM G51 [DATASHEET] 54

11209C-ATARM-20-Dec-13

If multiple pending exceptions have the same priority, the pending exception with the lowest exception number takes
precedence. For example, if both IRQ[0] and IRQ[1] are pending and have the same priority, then IRQ[0] is processed
before IRQ[1].

When the processor is executing an exception handler, the exception handler is preempted if a higher priority exception
occurs. If an exception occurs with the same priority as the exception being handled, the handler is not preempted,
irrespective of the exception number. However, the status of the new interrupt changes to pending.

10.4.3.6 Interrupt Priority Grouping
To increase priority control in systems with interrupts, the NVIC supports priority grouping. This divides each interrupt
priority register entry into two fields:
e An upper field that defines the group priority
e Alower field that defines a subpriority within the group.
Only the group priority determines preemption of interrupt exceptions. When the processor is executing an interrupt

exception handler, another interrupt with the same group priority as the interrupt being handled does not preempt the
handler.

If multiple pending interrupts have the same group priority, the subpriority field determines the order in which they are
processed. If multiple pending interrupts have the same group priority and subpriority, the interrupt with the lowest IRQ
number is processed first.

For information about splitting the interrupt priority fields into group priority and subpriority, see “Application Interrupt and
Reset Control Register” .

10.4.3.7 Exception Entry and Return

Descriptions of exception handling use the following terms:
Preemption

When the processor is executing an exception handler, an exception can preempt the exception handler if its priority is
higher than the priority of the exception being handled. See “Interrupt Priority Grouping” for more information about
preemption by an interrupt.

When one exception preempts another, the exceptions are called nested exceptions. See “Exception Entry” more
information.
Return

This occurs when the exception handler is completed, and:
e There is no pending exception with sufficient priority to be serviced
e The completed exception handler was not handling a late-arriving exception.
The processor pops the stack and restores the processor state to the state it had before the interrupt occurred. See
“Exception Return” for more information.
Tail-chaining
This mechanism speeds up exception servicing. On completion of an exception handler, if there is a pending exception

that meets the requirements for exception entry, the stack pop is skipped and control transfers to the new exception
handler.

Late-arriving

This mechanism speeds up preemption. If a higher priority exception occurs during state saving for a previous exception,
the processor switches to handle the higher priority exception and initiates the vector fetch for that exception. State
saving is not affected by late arrival because the state saved is the same for both exceptions. Therefore the state saving
continues uninterrupted. The processor can accept a late arriving exception until the first instruction of the exception
handler of the original exception enters the execute stage of the processor. On return from the exception handler of the
late-arriving exception, the normal tail-chaining rules apply.

Exception Entry

Atmel SAM G51 [DATASHEET] 55

11209C-ATARM-20-Dec-13

An Exception entry occurs when there is a pending exception with sufficient priority and either the processor is in Thread
mode, or the new exception is of a higher priority than the exception being handled, in which case the new exception
preempts the original exception.

When one exception preempts another, the exceptions are nested.

Sufficient priority means that the exception has more priority than any limits set by the mask registers, see “Exception
Mask Registers” . An exception with less priority than this is pending but is not handled by the processor.

When the processor takes an exception, unless the exception is a tail-chained or a late-arriving exception, the processor
pushes information onto the current stack. This operation is referred as stacking and the structure of eight data words is
referred to as stack frame.

When using floating-point routines, the Cortex-M4 processor automatically stacks the architected floating-point state on
exception entry. Figure 10-7 on page 56 shows the Cortex-M4 stack frame layout when floating-point state is preserved
on the stack as the result of an interrupt or an exception.

Note: Where stack space for floating-point state is not allocated, the stack frame is the same as that of ARMv7-M
implementations without an FPU. Figure 10-7 on page 56 shows this stack frame also.

Figure 10-7. Exception Stack Frame

Pre-IRQ top of stack

FPSCR
S15
S14
S13
S12
S11
S10

S9
S8
S7
S6
S5
S4
S3
s2 .

S1 ! b

S0 : falignen ! l— Pre-IRQ top of stack
xPSR Decreasing xPSR
PC memory PC

R address R

R12 R12

R3 R3

R2 v R2

R1 R1

RO « IRQ top of stack RO « IRQ top of stack

Exception frame with Exception frame without
floating-point storage floating-point storage

Immediately after stacking, the stack pointer indicates the lowest address in the stack frame. The alignment of the stack
frame is controlled via the STKALIGN bit of the Configuration Control Register (CCR).

The stack frame includes the return address. This is the address of the next instruction in the interrupted program. This
value is restored to the PC at exception return so that the interrupted program resumes.

In parallel to the stacking operation, the processor performs a vector fetch that reads the exception handler start address
from the vector table. When stacking is complete, the processor starts executing the exception handler. At the same

Atmel SAM G51 [DATASHEET] 56

11209C-ATARM-20-Dec-13

time, the processor writes an EXC_RETURN value to the LR. This indicates which stack pointer corresponds to the stack
frame and what operation mode the processor was in before the entry occurred.

If no higher priority exception occurs during the exception entry, the processor starts executing the exception handler and
automatically changes the status of the corresponding pending interrupt to active.

If another higher priority exception occurs during the exception entry, the processor starts executing the exception
handler for this exception and does not change the pending status of the earlier exception. This is the late arrival case.
Exception Return

An Exception return occurs when the processor is in Handler mode and executes one of the following instructions to load
the EXC_RETURN value into the PC:

e An LDM or POP instruction that loads the PC

e An LDR instruction with the PC as the destination.

e A BX instruction using any register.
EXC_RETURN is the value loaded into the LR on exception entry. The exception mechanism relies on this value to
detect when the processor has completed an exception handler. The lowest five bits of this value provide information on

the return stack and processor mode. Table 10-10 shows the EXC_RETURN values with a description of the exception
return behavior.

All EXC_RETURN values have bits[31:5] set to one. When this value is loaded into the PC, it indicates to the processor
that the exception is complete, and the processor initiates the appropriate exception return sequence.

Table 10-10. Exception Return Behavior

EXC_RETURNI[31:0] Description

OXEFEEFEFEL Return to Handler mode, gxceptlon return uses non-floating-point state
from the MSP and execution uses MSP after return.

OXEFEEFEE9Y Return_to Thread mode, exception return uses state from MSP and
execution uses MSP after return.

OXEFEEFEED Return_to Thread mode, exception return uses state from the PSP and
execution uses PSP after return.
Return to Handler mode, exception return uses floating-point-state from

OXFFFFFFEL MSP and execution uses MSP after return.
Return to Thread mode, exception return uses floating-point state from

OXFFFFFFES MSP and execution uses MSP after return.

OXEFEEFEED Return to T_hread mode, exception return uses floating-point state from PSP
and execution uses PSP after return.

Atmel SAM G51 [DATASHEET] 57

11209C-ATARM-20-Dec-13

10.4.3.8 Fault Handling

Faults are a subset of the exceptions, see “Exception Model” . The following generate a fault:

e Abus error on:

e An instruction fetch or vector table load

e A data access

e Aninternally-detected error such as an undefined instruction
e An attempt to execute an instruction from a memory region marked as Non-Executable (XN).
e A privilege violation or an attempt to access an unmanaged region causing an MPU fault.

Fault Types

Table 10-11 shows the types of fault, the handler used for the fault, the corresponding fault status register, and the
register bit that indicates that the fault has occurred. See “Configurable Fault Status Register” for more information about

the fault status registers.

Table 10-11. Faults
Fault Handler Bit Name Fault Status Register
Bus error on a vector read VECTTBL
Hard fault “Hard Fault Status Register”
Fault escalated to a hard fault FORCED
MPU or default memory map mismatch: - -
on instruction access IACCVIOL
on data access Memory DACCVIOL®
.)) management “MMFSR: Memory Management Fault Status
during exception stacking fault MSTKERR Subregister”
during exception unstacking MUNSKERR
during lazy floating-point state preservation MLSPERR
Bus error: - -
during exception stacking STKERR
during exception unstacking UNSTKERR
during instruction prefetch Bus fault IBUSERR
)))) “BFSR: Bus Fault Status Subregister”
during lazy floating-point state preservation LSPERR
Precise data bus error PRECISERR
Imprecise data bus error IMPRECISERR
Attempt to access a coprocessor NOCP
Undefined instruction UNDEFINSTR
Attempt to enter an invalid instruction set state INVSTATE
Usage fault “UFSR: Usage Fault Status Subregister”
Invalid EXC_RETURN value INVPC
lllegal unaligned load or store UNALIGNED
Divide By 0 DIVBYZERO
Notes: 1. Occurs on an access to an XN region even if the processor does not include an MPU or the MPU is disabled.

2. Attempt to use an instruction set other than the Thumb instruction set, or return to a non load/store-multiple instruction

with ICI continuation.
Fault Escalation and Hard Faults

Atmel

SAM G51 [DATASHEET] 58

11209C-ATARM-20-Dec-13

All faults exceptions except for hard fault have configurable exception priority, see “System Handler Priority Registers” .
The software can disable the execution of the handlers for these faults, see “System Handler Control and State Register”

Usually, the exception priority, together with the values of the exception mask registers, determines whether the
processor enters the fault handler, and whether a fault handler can preempt another fault handler, as described in
“Exception Model” .

In some situations, a fault with configurable priority is treated as a hard fault. This is called priority escalation, and the
fault is described as escalated to hard fault. Escalation to hard fault occurs when:

e Afault handler causes the same kind of fault as the one it is servicing. This escalation to hard fault occurs because
a fault handler cannot preempt itself; it must have the same priority as the current priority level.

e A fault handler causes a fault with the same or lower priority as the fault it is servicing. This is because the handler
for the new fault cannot preempt the currently executing fault handler.

e An exception handler causes a fault for which the priority is the same as or lower than the currently executing
exception.

e A fault occurs and the handler for that fault is not enabled.
If a bus fault occurs during a stack push when entering a bus fault handler, the bus fault does not escalate to a hard fault.

This means that if a corrupted stack causes a fault, the fault handler executes even though the stack push for the handler
failed. The fault handler operates but the stack contents are corrupted.

Note: Only Reset and NMI can preempt the fixed priority hard fault. A hard fault can preempt any exception other than
Reset, NMI, or another hard fault.

Fault Status Registers and Fault Address Registers

The fault status registers indicate the cause of a fault. For bus faults and memory management faults, the fault address
register indicates the address accessed by the operation that caused the fault, as shown in Table 10-12.

Table 10-12. Fault Status and Fault Address Registers
Status Register Address Register
Handler Name Name Register Description
Hard fault SCB_HFSR - “Hard Fault Status Register”
“MMFSR: Memory Management Fault Status Subregister”
Memory MMFSR SCB_MMFAR Y J _ g
management fault “MemManage Fault Address Register”
“BFSR: Bus Fault Status Subregister”
Bus fault BFSR SCB_BFAR ;
“Bus Fault Address Register”
Usage fault UFSR - “UFSR: Usage Fault Status Subregister”

Lockup

The processor enters a lockup state if a hard fault occurs when executing the NMI or hard fault handlers. When the
processor is in lockup state, it does not execute any instructions. The processor remains in lockup state until either:

e ltisreset
e An NMI occurs
e ltis halted by a debugger.

Note: If the lockup state occurs from the NMI handler, a subsequent NMI does not cause the processor to leave the
lockup state.

SAM G51 [DATASHEET] 59

11209C-ATARM-20-Dec-13

Atmel

10.5 Power Management

The Cortex-M4 processor sleep modes reduce the power consumption:
e Sleep mode stops the processor clock
e Deep sleep mode stops the system clock and switches off the PLL and flash memory.
The SLEEPDEEP bit of the SCR selects which sleep mode is used; see “System Control Register” .

This section describes the mechanisms for entering sleep mode, and the conditions for waking up from sleep mode.

10.5.1 Entering Sleep Mode
This section describes the mechanisms software can use to put the processor into sleep mode.

The system can generate spurious wakeup events, for example a debug operation wakes up the processor. Therefore,
the software must be able to put the processor back into sleep mode after such an event. A program might have an idle
loop to put the processor back to sleep mode.

10.5.1.1 Wait for Interrupt

The wait for interrupt instruction, WFI, causes immediate entry to sleep mode. When the processor executes a WFI
instruction it stops executing instructions and enters sleep mode. See “WFI” for more information.

10.5.1.2 Wait for Event
The wait for event instruction, WFE, causes entry to sleep mode conditional on the value of an one-bit event register.
When the processor executes a WFE instruction, it checks this register:
e If the register is 0, the processor stops executing instructions and enters sleep mode
e If the register is 1, the processor clears the register to 0 and continues executing instructions without entering
sleep mode.

See “WFE” for more information.

10.5.1.3 Sleep-on-exit

If the SLEEPONEXIT bit of the SCR is set to 1 when the processor completes the execution of an exception handler, it
returns to Thread mode and immediately enters sleep mode. Use this mechanism in applications that only require the
processor to run when an exception occurs.

10.5.2 Wakeup from Sleep Mode

The conditions for the processor to wake up depend on the mechanism that cause it to enter sleep mode.

10.5.2.1 Wakeup from WFI or Sleep-on-exit
Normally, the processor wakes up only when it detects an exception with sufficient priority to cause exception entry.
Some embedded systems might have to execute system restore tasks after the processor wakes up, and before it
executes an interrupt handler. To achieve this, set the PRIMASK bit to 1 and the FAULTMASK bit to 0. If an interrupt
arrives that is enabled and has a higher priority than the current exception priority, the processor wakes up but does not
execute the interrupt handler until the processor sets PRIMASK to zero. For more information about PRIMASK and
FAULTMASK, see “Exception Mask Registers” .

10.5.2.2 Wakeup from WFE

The processor wakes up if:
e It detects an exception with sufficient priority to cause an exception entry
e It detects an external event signal. See “External Event Input”
e In a multiprocessor system, another processor in the system executes an SEV instruction.
In addition, if the SEVONPEND bit in the SCR is set to 1, any new pending interrupt triggers an event and wakes up the

processor, even if the interrupt is disabled or has insufficient priority to cause an exception entry. For more information
about the SCR, see “System Control Register” .

Atmel SAM G51 [DATASHEET] 60

11209C-ATARM-20-Dec-13

10.5.2.3 External Event Input

The processor provides an external event input signal. Peripherals can drive this signal, either to wake the processor
from WFE, or to set the internal WFE event register to 1 to indicate that the processor must not enter sleep mode on a
later WFE instruction. See “Wait for Event” for more information.

10.5.3 Power Management Programming Hints

ISO/IEC C cannot directly generate the WFI and WFE instructions. The CMSIS provides the following functions for these
instructions:

void __ WE(void) // Wit for Event

void _ Wl (void) // Wait for Interrupt

Atmel SAM G51 [DATASHEET] 61

11209C-ATARM-20-Dec-13

10.6 Cortex-M4 Instruction Set

10.6.1 Instruction Set Summary

The processor implements a version of the Thumb instruction set. Table 10-13 lists the supported instructions.
e Angle brackets, <>, enclose alternative forms of the operand

Braces, {}, enclose optional operands

The Operands column is not exhaustive

Op2 is a flexible second operand that can be either a register or a constant

Most instructions can use an optional condition code suffix.
For more information on the instructions and operands, see the instruction descriptions.

Table 10-13. Cortex-M4 Instructions

Mnemonic Operands Description Flags
ADC, ADCS {Rd,} Rn, Op2 Add with Carry N,Z,C,V
ADD, ADDS {Rd,} Rn, Op2 Add N,Z,C,\V
ADD, ADDW {Rd,} Rn, #imm12 Add N,Z,C.V
ADR Rd, label Load PC-relative address -

AND, ANDS {Rd,} Rn, Op2 Logical AND N,Z,C
ASR, ASRS Rd, Rm, <Rs|#n> Arithmetic Shift Right N,zZ,C

B label Branch -

BFC Rd, #Isb, #width Bit Field Clear -

BFI Rd, Rn, #Isb, #width Bit Field Insert -

BIC, BICS {Rd,} Rn, Op2 Bit Clear N,Z,C
BKPT #imm Breakpoint -

BL label Branch with Link -

BLX Rm Branch indirect with Link -

BX Rm Branch indirect -
CBNz Rn, label Compare and Branch if Non Zero -

cBz Rn, label Compare and Branch if Zero -
CLREX - Clear Exclusive -

CLZ Rd, Rm Count leading zeros -

CMN Rn, Op2 Compare Negative N,Z,C,V
CMP Rn, Op2 Compare N,Z,C\V
CPSID i Change Processor State, Disable Interrupts -
CPSIE i Change Processor State, Enable Interrupts -

DMB - Data Memory Barrier -

DSB - Data Synchronization Barrier -

EOR, EORS {Rd,} Rn, Op2 Exclusive OR N,Z,C
ISB - Instruction Synchronization Barrier -

IT - If-Then condition block -

LDM Rn{!}, reglist Load Multiple registers, increment after -

Atmel

SAM G51 [DATASHEET]

11209C-ATARM-20-Dec-13

62

Table 10-13. Cortex-M4 Instructions (Continued)

Mnemonic Operands Description Flags
LDMDB, LDMEA Rn{!}, reglist Load Multiple registers, decrement before -
LDMFD, LDMIA Rn{!}, reglist Load Multiple registers, increment after -
LDR Rt, [Rn, #offset] Load Register with word -
LDRB, LDRBT Rt, [Rn, #offset] Load Register with byte -
LDRD Rt, Rt2, [Rn, #offset] Load Register with two bytes -
LDREX Rt, [Rn, #offset] Load Register Exclusive -
LDREXB Rt, [Rn] Load Register Exclusive with byte -
LDREXH Rt, [Rn] Load Register Exclusive with halfword -
LDRH, LDRHT Rt, [Rn, #offset] Load Register with halfword -
LDRSB, DRSBT Rt, [Rn, #offset] Load Register with signed byte -
LDRSH, LDRSHT Rt, [Rn, #offset] Load Register with signed halfword -
LDRT Rt, [Rn, #offset] Load Register with word -
LSL, LSLS Rd, Rm, <Rs|#n> Logical Shift Left N,z,C
LSR, LSRS Rd, Rm, <Rs|#n> Logical Shift Right N,Z,C
MLA Rd, Rn, Rm, Ra Multiply with Accumulate, 32-bit result -
MLS Rd, Rn, Rm, Ra Multiply and Subtract, 32-bit result -
MOV, MOVS Rd, Op2 Move N,zZ,C
MOVT Rd, #imm16 Move Top -
MOVW, MOV Rd, #imm16 Move 16-bit constant N,Z,C
MRS Rd, spec_reg Move from special register to general register -
MSR spec_reg, Rm Move from general register to special register N,Z,CV
MUL, MULS {Rd,} Rn, Rm Multiply, 32-bit result N,Z
MVN, MVNS Rd, Op2 Move NOT N,zZ,C
NOP - No Operation -
ORN, ORNS {Rd,} Rn, Op2 Logical OR NOT N,Z,C
ORR, ORRS {Rd,} Rn, Op2 Logical OR N,Z,C
PKHTB, PKHBT {Rd,} Rn, Rm, Op2 Pack Halfword -
POP reglist Pop registers from stack -
PUSH reglist Push registers onto stack -
QADD {Rd,} Rn, Rm Saturating double and Add Q
QADD16 {Rd,} Rn, Rm Saturating Add 16 -
QADDS8 {Rd,} Rn, Rm Saturating Add 8 -
QASX {Rd,} Rn, Rm Saturating Add and Subtract with Exchange -
QDADD {Rd,} Rn, Rm Saturating Add Q
QDSUB {Rd,} Rn, Rm Saturating double and Subtract Q
QSAX {Rd,} Rn, Rm Saturating Subtract and Add with Exchange -
QsSuB {Rd,} Rn, Rm Saturating Subtract Q

Atmel

SAM G51 [DATASHEET]

11209C-ATARM-20-Dec-13

63

Table 10-13. Cortex-M4 Instructions (Continued)

Mnemonic Operands Description Flags
QSUBL16 {Rd,} Rn, Rm Saturating Subtract 16 -
QsSuUBS8 {Rd,} Rn, Rm Saturating Subtract 8 -
RBIT Rd, Rn Reverse Bits -
REV Rd, Rn Reverse byte order in a word -
REV16 Rd, Rn Reverse byte order in each halfword -
REVSH Rd, Rn Reverse byte order in bottom halfword and sign extend -
ROR, RORS Rd, Rm, <Rs|#n> Rotate Right N,Z,C
RRX, RRXS Rd, Rm Rotate Right with Extend N,Z,C
RSB, RSBS {Rd,} Rn, Op2 Reverse Subtract N,Z,CV
SADD16 {Rd,} Rn, Rm Signed Add 16 GE
SADDS8 {Rd.,} Rn, Rm Signed Add 8 and Subtract with Exchange GE
SASX {Rd,} Rn, Rm Signed Add GE
SBC, SBCS {Rd,} Rn, Op2 Subtract with Carry N,Z,C.V
SBFX Rd, Rn, #Isb, #width Signed Bit Field Extract -
SDIV {Rd,} Rn, Rm Signed Divide -
SEL {Rd,} Rn, Rm Select bytes -
SEV - Send Event -
SHADD16 {Rd,} Rn, Rm Signed Halving Add 16 -
SHADDS {Rd,} Rn, Rm Signed Halving Add 8 -
SHASX {Rd,} Rn, Rm Signed Halving Add and Subtract with Exchange -
SHSAX {Rd,} Rn, Rm Signed Halving Subtract and Add with Exchange -
SHSUB16 {Rd,} Rn, Rm Signed Halving Subtract 16 -
SHSUBS8 {Rd,} Rn, Rm Signed Halving Subtract 8 -
gmtﬁ'?BB ;\'\//llll_‘:_ﬁ-_r Rd, Rn, Rm, Ra Signed Multiply Accumulate Long (halfwords) Q
SMLAD, SMLADX Rd, Rn, Rm, Ra Signed Multiply Accumulate Dual Q
SMLAL RdLo, RdHi, Rn, Rm Signed Multiply with Accumulate (32 x 32 + 64), 64-bit result -
gmtﬁt_?: Ssll\\/IAII:QII:E'I'T RdLo, RdHi, Rn, Rm Signed Multiply Accumulate Long, halfwords -
SMLALD, SMLALDX RdLo, RdHi, Rn, Rm Signed Multiply Accumulate Long Dual -
SMLAWB, SMLAWT Rd, Rn, Rm, Ra Signed Multiply Accumulate, word by halfword Q
SMLSD Rd, Rn, Rm, Ra Signed Multiply Subtract Dual Q
SMLSLD RdLo, RdHi, Rn, Rm Signed Multiply Subtract Long Dual

SMMLA Rd, Rn, Rm, Ra Signed Most significant word Multiply Accumulate -
SMMLS, SMMLR Rd, Rn, Rm, Ra Signed Most significant word Multiply Subtract —
SMMUL, SMMULR {Rd,} Rn, Rm Signed Most significant word Multiply -
SMUAD {Rd,} Rn, Rm Signed dual Multiply Add Q

Atmel

SAM G51 [DATASHEET] 64

11209C-ATARM-20-Dec-13

Table 10-13. Cortex-M4 Instructions (Continued)
Mnemonic Operands Description Flags
gmtTBBB: YOl | (Rd3Rn, Rm Signed Multiply (halfwords) -
SMULL RdLo, RdHi, Rn, Rm Signed Multiply (32 x 32), 64-bit result -
SMULWB, SMULWT {Rd,} Rn, Rm Signed Multiply word by halfword -
SMUSD, SMUSDX {Rd,} Rn, Rm Signed dual Multiply Subtract -
SSAT Rd, #n, Rm {,shift #s} Signed Saturate Q
SSAT16 Rd, #n, Rm Signed Saturate 16 Q
SSAX {Rd,} Rn, Rm Signed Subtract and Add with Exchange GE
SSUB16 {Rd,} Rn, Rm Signed Subtract 16 -
SSUBS8 {Rd,} Rn, Rm Signed Subtract 8 -
STM Rn{!}, reglist Store Multiple registers, increment after -
STMDB, STMEA Rn{1}, reglist Store Multiple registers, decrement before -
STMFD, STMIA Rn{1}, reglist Store Multiple registers, increment after -
STR Rt, [Rn, #offset] Store Register word -
STRB, STRBT Rt, [Rn, #offset] Store Register byte -
STRD Rt, Rt2, [Rn, #offset] Store Register two words -
STREX Rd, Rt, [Rn, #offset] Store Register Exclusive -
STREXB Rd, Rt, [Rn] Store Register Exclusive byte -
STREXH Rd, Rt, [Rn] Store Register Exclusive halfword -
STRH, STRHT Rt, [Rn, #offset] Store Register halfword -
STRT Rt, [Rn, #offset] Store Register word -
SUB, SUBS {Rd,} Rn, Op2 Subtract N,z,CV
SUB, SUBW {Rd,} Rn, #imm12 Subtract N,Z,C.V
svC #imm Supervisor Call -
SXTAB {Rd,} Rn, Rm,{,ROR #} | Extend 8 bits to 32 and add -
SXTAB16 {Rd,} Rn, Rm,{,ROR #} | Dual extend 8 bits to 16 and add -
SXTAH {Rd,} Rn, Rm,{,ROR #} | Extend 16 bits to 32 and add -
SXTB16 {Rd,} Rm {,ROR #n} Signed Extend Byte 16 -
SXTB {Rd,} Rm {,ROR #n} Sign extend a byte -
SXTH {Rd,} Rm {,ROR #n} Sign extend a halfword -
TBB [Rn, Rm] Table Branch Byte -
TBH [Rn, Rm, LSL #1] Table Branch Halfword -
TEQ Rn, Op2 Test Equivalence N,Z,C
TST Rn, Op2 Test N,Z,C
UADD16 {Rd,} Rn, Rm Unsigned Add 16 GE
UADDS8 {Rd,} Rn, Rm Unsigned Add 8 GE
USAX {Rd,} Rn, Rm Unsigned Subtract and Add with Exchange GE

Atmel

SAM G51 [DATASHEET]

11209C-ATARM-20-Dec-13

65

Table 10-13. Cortex-M4 Instructions (Continued)
Mnemonic Operands Description Flags
UHADD16 {Rd,} Rn, Rm Unsigned Halving Add 16 -
UHADDS {Rd,} Rn, Rm Unsigned Halving Add 8 -
UHASX {Rd,} Rn, Rm Unsigned Halving Add and Subtract with Exchange -
UHSAX {Rd.,} Rn, Rm Unsigned Halving Subtract and Add with Exchange -
UHSUB16 {Rd,} Rn, Rm Unsigned Halving Subtract 16 -
UHSUBS8 {Rd.,} Rn, Rm Unsigned Halving Subtract 8 -
UBFX Rd, Rn, #lsb, #width Unsigned Bit Field Extract -
ubDIV {Rd,} Rn, Rm Unsigned Divide -
UMAAL RdLo, RdHi, Rn, Rm ;J:_sbiig:r::gul\lcultiply Accumulate Accumulate Long (32 x32+32+32), |
UMLAL RdLo, RdHi, Rn, Rm é’;si?ggdfgzl;ing_‘g’iitﬂ:eAsi‘l’t”m“'ate -
UMULL RdLo, RdHi, Rn, Rm Unsigned Multiply (32 x 32), 64-bit result -
UQADD16 {Rd,} Rn, Rm Unsigned Saturating Add 16 -
UQADDS8 {Rd,} Rn, Rm Unsigned Saturating Add 8 -
UQASX {Rd,} Rn, Rm Unsigned Saturating Add and Subtract with Exchange -
UQSAX {Rd,} Rn, Rm Unsigned Saturating Subtract and Add with Exchange -
UQSUB16 {Rd,} Rn, Rm Unsigned Saturating Subtract 16 -
UQSuUBS {Rd,} Rn, Rm Unsigned Saturating Subtract 8 -
USADS {Rd,} Rn, Rm Unsigned Sum of Absolute Differences -
USADAS {Rd,} Rn, Rm, Ra Unsigned Sum of Absolute Differences and Accumulate -
USAT Rd, #n, Rm {,shift #s} Unsigned Saturate Q
USAT16 Rd, #n, Rm Unsigned Saturate 16 Q
UASX {Rd.,} Rn, Rm Unsigned Add and Subtract with Exchange GE
USUB16 {Rd.,} Rn, Rm Unsigned Subtract 16 GE
UsuB8 {Rd,} Rn, Rm Unsigned Subtract 8 GE
UXTAB {Rd,} Rn, Rm,{,ROR #} | Rotate, extend 8 bits to 32 and Add -
UXTAB16 {Rd,} Rn, Rm,{,ROR #} | Rotate, dual extend 8 bits to 16 and Add -
UXTAH {Rd,} Rn, Rm,{,ROR #} | Rotate, unsigned extend and Add Halfword -
UXTB {Rd,} Rm {,ROR #n} Zero extend a byte -
UXTB16 {Rd,} Rm {,ROR #n} Unsigned Extend Byte 16 -
UXTH {Rd,} Rm {,ROR #n} Zero extend a halfword -
VABS.F32 Sd, Sm Floating-point Absolute -
VADD.F32 {Sd,} Sn, Sm Floating-point Add -
VCMP.E32 Sd, <Sm | #0.0> ;:r?(;n;;roe two floating-point registers, or one floating-point register FPSCR
vewpers2 | sa.comismo- | Commete o toalngpont egster, oone fostnopant et | s

Atmel

SAM G51 [DATASHEET]

11209C-ATARM-20-Dec-13

66

Table 10-13. Cortex-M4 Instructions (Continued)

Mnemonic Operands Description Flags
VCVT.S32.F32 Sd, Sm Convert between floating-point and integer -
VCVT.S16.F32 Sd, Sd, #fbits Convert between floating-point and fixed point -
VCVTR.S32.F32 Sd, Sm Convert between floating-point and integer with rounding -
VCVT<B|H>.F32.F16 Sd, Sm Converts half-precision value to single-precision -
VCVTT<B|T>.F32.F16 | Sd, Sm Converts single-precision register to half-precision -
VDIV.F32 {Sd,} Sn, Sm Floating-point Divide -
VFMA.F32 {Sd,} Sn, Sm Floating-point Fused Multiply Accumulate -
VFNMA.F32 {Sd,} Sn, Sm Floating-point Fused Negate Multiply Accumulate -
VFMS.F32 {Sd,} Sn, Sm Floating-point Fused Multiply Subtract -
VFNMS.F32 {Sd,} Sn, Sm Floating-point Fused Negate Multiply Subtract -
VLDM.F<32|64> Rn{1}, list Load Multiple extension registers -
VLDR.F<32|64> <Dd|Sd>, [Rn] Load an extension register from memory -
VLMA.F32 {Sd,} Sn, Sm Floating-point Multiply Accumulate -
VLMS.F32 {Sd,} Sn, Sm Floating-point Multiply Subtract -
VMOV.F32 Sd, #imm Floating-point Move immediate -
VMOV Sd, Sm Floating-point Move register -
VMOV Sn, Rt Copy ARM core register to single precision -
VMOV Sm, Sm1, Rt, Rt2 Copy 2 ARM core registers to 2 single precision -
VMOV Dd[x], Rt Copy ARM core register to scalar -
VMOV Rt, Dn[x] Copy scalar to ARM core register -
VMRS Rt, FPSCR Move FPSCR to ARM core register or APSR N,Z,C.\V
VMSR FPSCR, Rt Move to FPSCR from ARM Core register FPSCR
VMUL.F32 {Sd,} Sn, Sm Floating-point Multiply -
VNEG.F32 Sd, Sm Floating-point Negate -
VNMLA.F32 Sd, Sn, Sm Floating-point Multiply and Add -
VNMLS.F32 Sd, Sn, Sm Floating-point Multiply and Subtract -
VNMUL {Sd,} Sn, Sm Floating-point Multiply -
VPOP list Pop extension registers -
VPUSH list Push extension registers -
VSQRT.F32 Sd, Sm Calculates floating-point Square Root -
VSTM Rn{1}, list Floating-point register Store Multiple -
VSTR.F<32|64> Sd, [Rn] Stores an extension register to memory -
VSUB.F<32|64> {Sd,} Sn, Sm Floating-point Subtract -
WFE - Wait For Event -
WFI - Wait For Interrupt -

Atmel

SAM G51 [DATASHEET]

11209C-ATARM-20-Dec-13

67

10.6.2 CMSIS Functions

ISO/IEC cannot directly access some Cortex-M4 instructions. This section describes intrinsic functions that can generate
these instructions, provided by the CMIS and that might be provided by a C compiler. If a C compiler does not support an
appropriate intrinsic function, the user might have to use inline assembler to access some instructions.

The CMSIS provides the following intrinsic functions to generate instructions that ISO/IEC C code cannot directly access:

Table 10-14. CMSIS Functions to Generate some Cortex-M4 Instructions
Instruction CMSIS Function
CPSIE | void __enable_irg(void)
CPSID | void __disable_irg(void)
CPSIE F void __enable_fault_irq(void)
CPSIDF void __disable_fault_irg(void)
ISB void __ISB(void)
DSB void ___DSB(void)
DMB void __DMB(void)
REV uint32_t __ REV(uint32_t int value)
REV16 uint32_t _ REV16(uint32_t int value)
REVSH uint32_t _ REVSH(uint32_t int value)
RBIT uint32_t __ RBIT(uint32_t int value)
SEV void __SEV(void)
WFE void __WFE(void)
WFI void __WFI(void)

The CMSIS also provides a humber of functions for accessing the special registers using MRS and MSR instructions:

Table 10-15. CMSIS Intrinsic Functions to Access the Special Registers
Special Register Access CMSIS Function
Read uint32_t __get PRIMASK (void)
PRIMASK
Write void __set_ PRIMASK (uint32_t value)
Read uint32_t __get_ FAULTMASK (void)
FAULTMASK
Write void __set FAULTMASK (uint32_t value)
Read uint32_t __get BASEPRI (void)
BASEPRI
Write void __set BASEPRI (uint32_t value)
Read uint32_t __get CONTROL (void)
CONTROL
Write void __set CONTROL (uint32_t value)
Read uint32_t __get_ MSP (void)
MSP
Write void __set_ MSP (uint32_t TopOfMainStack)
Read uint32_t __get PSP (void)
PSP
Write void __set_PSP (uint32_t TopOfProcStack)

Atmel

SAM G51 [DATASHEET] 68

11209C-ATARM-20-Dec-13

10.6.3 Instruction Descriptions

10.6.3.1 Operands

An instruction operand can be an ARM register, a constant, or another instruction-specific parameter. Instructions act on
the operands and often store the result in a destination register. When there is a destination register in the instruction, it
is usually specified before the operands.

Operands in some instructions are flexible, can either be a register or a constant. See “Flexible Second Operand” .

10.6.3.2 Restrictions when Using PC or SP
Many instructions have restrictions on whether the Program Counter (PC) or Stack Pointer (SP) for the operands or
destination register can be used. See instruction descriptions for more information.

Note: Bit[O] of any address written to the PC with a BX, BLX, LDM, LDR, or POP instruction must be 1 for correct exe-
cution, because this bit indicates the required instruction set, and the Cortex-M4 processor only supports Thumb
instructions.

10.6.3.3 Flexible Second Operand

Many general data processing instructions have a flexible second operand. This is shown as Operand2 in the
descriptions of the syntax of each instruction.
Operand2 can be a:
e “Constant”
e “Register with Optional Shift”
Constant
Specify an Operand2 constant in the form:
#const ant
where constant can be:
e Any constant that can be produced by shifting an 8-bit value left by any number of bits within a 32-bit word
e Any constant of the form 0x00XYO00XY
e Any constant of the form 0xXY00XYO00
e Any constant of the form OxXYXYXYXY.

Note: In the constants shown above, X and Y are hexadecimal digits.
In addition, in a small number of instructions, constant can take a wider range of values. These are described in the
individual instruction descriptions.

When an Operand2 constant is used with the instructions MOVS, MVNS, ANDS, ORRS, ORNS, EORS, BICS, TEQ or
TST, the carry flag is updated to bit[31] of the constant, if the constant is greater than 255 and can be produced by
shifting an 8-bit value. These instructions do not affect the carry flag if Operand?2 is any other constant.

Instruction Substitution
The assembler might be able to produce an equivalent instruction in cases where the user specifies a constant that is not

permitted. For example, an assembler might assemble the instruction CMP Rd, #0xFFFFFFFE as the equivalent
instruction CMN Rd, #0x2.

Register with Optional Shift

Specify an Operand?2 register in the form:

Rm {, shift}
where:
Rm is the register holding the data for the second operand.
shift is an optional shift to be applied to Rm. It can be one of:
ASR #n arithmetic shift right n bits, 1 <n < 32.
/ItmeL SAM G51 [DATASHEET] 69

11209C-ATARM-20-Dec-13

LSL #n logical shift left n bits, 1 <n < 31.
LSR #n logical shift right n bits, 1 < n < 32.
ROR #n rotate right n bits, 1 <n < 31.

RRX rotate right one bit, with extend.

- if omitted, no shift occurs, equivalent to LSL #0.
If the user omits the shift, or specifies LSL #0, the instruction uses the value in Rm.

If the user specifies a shift, the shift is applied to the value in Rm, and the resulting 32-bit value is used by the instruction.
However, the contents in the register Rm remains unchanged. Specifying a register with shift also updates the carry flag
when used with certain instructions. For information on the shift operations and how they affect the carry flag, see
“Flexible Second Operand”

10.6.3.4 Shift Operations
Register shift operations move the bits in a register left or right by a specified number of bits, the shift length. Register
shift can be performed:
e Directly by the instructions ASR, LSR, LSL, ROR, and RRX, and the result is written to a destination register
e During the calculation of Operand2 by the instructions that specify the second operand as a register with shift. See
“Flexible Second Operand” . The result is used by the instruction.

The permitted shift lengths depend on the shift type and the instruction. If the shift length is 0, no shift occurs. Register
shift operations update the carry flag except when the specified shift length is 0. The following subsections describe the
various shift operations and how they affect the carry flag. In these descriptions, Rm is the register containing the value
to be shifted, and n is the shift length.

ASR
Arithmetic shift right by n bits moves the left-hand 32-n bits of the register, Rm, to the right by n places, into the right-hand

32-n bits of the result. And it copies the original bit[31] of the register into the left-hand n bits of the result. See Figure 10-
8.

The ASR #n operation can be used to divide the value in the register Rm by 2", with the result being rounded towards
negative-infinity.

When the instruction is ASRS or when ASR #n is used in Operand2 with the instructions MOVS, MVNS, ANDS, ORRS,
ORNS, EORS, BICS, TEQ or TST, the carry flag is updated to the last bit shifted out, bit[n-1], of the register Rm.

e Ifnis 32 or more, then all the bits in the result are set to the value of bit[31] of Rm.
e If nis 32 or more and the carry flag is updated, it is updated to the value of bit[31] of Rm.

Figure 10-8. ASR #3

31 5[4(3(2]1]0 |—:|

AEEE SN R

LSR

Logical shift right by n bits moves the left-hand 32-n bits of the register Rm, to the right by n places, into the right-hand
32-n bits of the result. And it sets the left-hand n bits of the result to 0. See Figure 10-9.

The LSR #n operation can be used to divide the value in the register Rm by 2", if the value is regarded as an unsigned
integer.

Atmel SAM G51 [DATASHEET] 70

11209C-ATARM-20-Dec-13

When the instruction is LSRS or when LSR #n is used in Operand2 with the instructions MOVS, MVNS, ANDS, ORRS,
ORNS, EORS, BICS, TEQ or TST, the carry flag is updated to the last bit shifted out, bit[n-1], of the register Rm.

e If nis 32 or more, then all the bits in the result are cleared to 0.
e Ifnis 33 or more and the carry flag is updated, it is updated to O.

Figure 10-9. LSR#3
[
00O Flag
YVYyY

31 5(413|12]1]0 |—:|

| L [

LSL

Logical shift left by n bits moves the right-hand 32-n bits of the register Rm, to the left by n places, into the left-hand 32-n
bits of the result; and it sets the right-hand n bits of the result to 0. See Figure 10-10.

The LSL #n operation can be used to multiply the value in the register Rm by 2", if the value is regarded as an unsigned
integer or a two’s complement signed integer. Overflow can occur without warning.

When the instruction is LSLS or when LSL #n, with non-zero n, is used in Operand2 with the instructions MOVS, MVNS,
ANDS, ORRS, ORNS, EORS, BICS, TEQ or TST, the carry flag is updated to the last bit shifted out, bit[32-n], of the
register Rm. These instructions do not affect the carry flag when used with LSL #0.

e Ifnis 32 or more, then all the bits in the result are cleared to O.
e Ifnis 33 or more and the carry flag is updated, it is updated to O.

Figure 10-10. LSL #3

l
|j31 5(4|3

e TTEL]] say

o +O—

ROR
Rotate right by n bits moves the left-hand 32-n bits of the register Rm, to the right by n places, into the right-hand 32-n
bits of the result; and it moves the right-hand n bits of the register into the left-hand n bits of the result. See Figure 10-11.

When the instruction is RORS or when ROR #n is used in Operand?2 with the instructions MOVS, MVNS, ANDS, ORRS,
ORNS, EORS, BICS, TEQ or TST, the carry flag is updated to the last bit rotation, bit[n-1], of the register Rm.

e Ifnis 32, then the value of the result is same as the value in Rm, and if the carry flag is updated, it is updated to
bit[31] of Rm.
e ROR with shift length, n, more than 32 is the same as ROR with shift length n-32.

SAM G51 [DATASHEET] 71
A t m eL 11209C-ATARM-20-Dec-13

Figure 10-11. ROR #3

Carry
Fla
¢ Yy Vv | g

31 5[4(3(2]1]0 D

AEEE [LHrT

RRX

Rotate right with extend moves the bits of the register Rm to the right by one bit; and it copies the carry flag into bit[31] of
the result. See Figure 10-12.

When the instruction is RRXS or when RRX is used in Operand2 with the instructions MOVS, MVNS, ANDS, ORRS,
ORNS, EORS, BICS, TEQ or TST, the carry flag is updated to bit[0] of the register Rm.

Figure 10-12. RRX

Carry
Flag

31|30 110

FLATS L]

10.6.3.5 Address Alignment

An aligned access is an operation where a word-aligned address is used for a word, dual word, or multiple word access,
or where a halfword-aligned address is used for a halfword access. Byte accesses are always aligned.
The Cortex-M4 processor supports unaligned access only for the following instructions:

e |DR,LDRT

e LDRH, LDRHT

e |DRSH, LDRSHT

e STR, STRT

e STRH, STRHT

All other load and store instructions generate a usage fault exception if they perform an unaligned access, and therefore
their accesses must be address-aligned. For more information about usage faults, see “Fault Handling” .

Unaligned accesses are usually slower than aligned accesses. In addition, some memory regions might not support
unaligned accesses. Therefore, ARM recommends that programmers ensure that accesses are aligned. To avoid
accidental generation of unaligned accesses, use the UNALIGN_TRP bit in the Configuration and Control Register to
trap all unaligned accesses, see “Configuration and Control Register” .

10.6.3.6 PC-relative Expressions

A PC-relative expression or label is a symbol that represents the address of an instruction or literal data. It is represented
in the instruction as the PC value plus or minus a numeric offset. The assembler calculates the required offset from the
label and the address of the current instruction. If the offset is too big, the assembler produces an error.

For B, BL, CBNZ, and CBZ instructions, the value of the PC is the address of the current instruction plus 4 bytes.
e For all other instructions that use labels, the value of the PC is the address of the current instruction plus 4 bytes,
with bit[1] of the result cleared to 0 to make it word-aligned.
e Your assembler might permit other syntaxes for PC-relative expressions, such as a label plus or minus a number,
or an expression of the form [PC, #number].

Atmel SAM G51 [DATASHEET] 72

11209C-ATARM-20-Dec-13

10.6.3.7 Conditional Execution

Most data processing instructions can optionally update the condition flags in the Application Program Status Register
(APSR) according to the result of the operation, see “Application Program Status Register” . Some instructions update all
flags, and some only update a subset. If a flag is not updated, the original value is preserved. See the instruction
descriptions for the flags they affect.
An instruction can be executed conditionally, based on the condition flags set in another instruction, either:

e Immediately after the instruction that updated the flags

e After any number of intervening instructions that have not updated the flags.
Conditional execution is available by using conditional branches or by adding condition code suffixes to instructions. See
Table 10-16 for a list of the suffixes to add to instructions to make them conditional instructions. The condition code suffix

enables the processor to test a condition based on the flags. If the condition test of a conditional instruction fails, the
instruction:

e Does not execute
e Does not write any value to its destination register
e Does not affect any of the flags
e Does not generate any exception.
Conditional instructions, except for conditional branches, must be inside an If-Then instruction block. See “IT” for more

information and restrictions when using the IT instruction. Depending on the vendor, the assembler might automatically
insert an IT instruction if there are conditional instructions outside the IT block.

The CBZ and CBNZ instructions are used to compare the value of a register against zero and branch on the result.

This section describes:
e “Condition Flags”
e “Condition Code Suffixes” .
Condition Flags

The APSR contains the following condition flags:

N Set to 1 when the result of the operation was negative, cleared to 0 otherwise.
Z Set to 1 when the result of the operation was zero, cleared to 0 otherwise.

C Set to 1 when the operation resulted in a carry, cleared to 0 otherwise.

\% Set to 1 when the operation caused overflow, cleared to O otherwise.

For more information about the APSR, see “Program Status Register” .

A carry occurs:

e If the result of an addition is greater than or equal to 232

e If the result of a subtraction is positive or zero

e As the result of an inline barrel shifter operation in a move or logical instruction.
An overflow occurs when the sign of the result, in bit[31], does not match the sign of the result, had the operation been
performed at infinite precision, for example:

e If adding two negative values results in a positive value

e If adding two positive values results in a negative value

e If subtracting a positive value from a negative value generates a positive value

e If subtracting a negative value from a positive value generates a negative value.
The Compare operations are identical to subtracting, for CMP, or adding, for CMN, except that the result is discarded.
See the instruction descriptions for more information.

Note: Most instructions update the status flags only if the S suffix is specified. See the instruction descriptions for more
information.

Atmel SAM G51 [DATASHEET] 73

11209C-ATARM-20-Dec-13

Condition Code Suffixes

The instructions that can be conditional have an optional condition code, shown in syntax descriptions as {cond}.
Conditional execution requires a preceding IT instruction. An instruction with a condition code is only executed if the
condition code flags in the APSR meet the specified condition. Table 10-16 shows the condition codes to use.

A conditional execution can be used with the IT instruction to reduce the number of branch instructions in code.

Table 10-16 also shows the relationship between condition code suffixes and the N, Z, C, and V flags.

Table 10-16. Condition Code Suffixes
Suffix Flags Meaning
EQ zZ=1 Equal
NE Z=0 Not equal
CSorHS c=1 Higher or same, unsigned >
CCorlLO C=0 Lower, unsigned <
MI N=1 Negative
PL N=0 Positive or zero
VS V=1 Overflow
VC V=0 No overflow
HI C=1landZ=0 Higher, unsigned >
LS C=0orz=1 Lower or same, unsigned <
GE N=V Greater than or equal, signed >
LT N!=V Less than, signed <
GT Z=0andN=V Greater than, signed >
LE Z=1landN!=V Less than or equal, signed <
AL Can have any value Always. This is the default when no suffix is specified.

Absolute Value

The example below shows the use of a conditional instruction to find the absolute value of a number. RO = ABS(R1).

MOVS RO, R1 ; RO = Rl, setting flags
1T M ; I Tinstruction for the negative condition
RSBM RO, R1, #0 ; If negative, RO = -R1

Compare and Update Value

The example below shows the use of conditional instructions to update the value of R4 if the signed values RO is greater

than R1 and R2 is greater than R3.

cwp RO, R1 ; Conpare RO and R1, setting flags

ITT Gr ; I Tinstruction for the two GT conditions

CVPGT R2, R3 ; If '"greater than', conpare R2 and R3, setting flags
MOVGT R4, RS ; If still "greater than', do R4 = RS

10.6.3.8 Instruction Width Selection

There are many instructions that can generate either a 16-bit encoding or a 32-bit encoding depending on the operands
and destination register specified. For some of these instructions, the user can force a specific instruction size by using
an instruction width suffix. The .W suffix forces a 32-bit instruction encoding. The .N suffix forces a 16-bit instruction

encoding.

If the user specifies an instruction width suffix and the assembler cannot generate an instruction encoding of the

Atmel

requested width, it generates an error.

SAM G51 [DATASHEET]

11209C-ATARM-20-Dec-13

74

Note: In some cases, it might be necessary to specify the .W sulffix, for example if the operand is the label of an
instruction or literal data, as in the case of branch instructions. This is because the assembler might not automat-
ically generate the right size encoding.

To use an instruction width suffix, place it immediately after the instruction mnemonic and condition code, if any. The
example below shows instructions with the instruction width suffix.
BCS. W | abel ; Creates a 32-bit instruction even for a short
. branch
ADDS. WRO, RO, Rl ; creates a 32-bit instruction even though the sane
; operation can be done by a 16-bit instruction

Atmel SAM G51 [DATASHEET] 75

11209C-ATARM-20-Dec-13

The table below shows the memory access instructions.

Table 10-17. Memory Access Instructions
Mnemonic Description
ADR Load PC-relative address
CLREX Clear Exclusive
LDM{mode} Load Multiple registers
LDR{type} Load Register using immediate offset
LDR{type} Load Register using register offset
LDR{type}T Load Register with unprivileged access
LDR Load Register using PC-relative address
LDRD Load Register Dual
LDREX{type} Load Register Exclusive
POP Pop registers from stack
PUSH Push registers onto stack
STM{mode} Store Multiple registers
STR{type} Store Register using immediate offset
STR{type} Store Register using register offset
STR{type}T Store Register with unprivileged access
STREX{type} Store Register Exclusive

Atmel

SAM G51 [DATASHEET]

11209C-ATARM-20-Dec-13

10.6.4 Memory Access Instructions

76

10.6.4.1 ADR

Load PC-relative address.

Syntax

ADR{ cond} Rd, | abel
where:
cond is an optional condition code, see “Conditional Execution” .
Rd is the destination register.
label is a PC-relative expression. See “PC-relative Expressions” .
Operation

ADR determines the address by adding an immediate value to the PC, and writes the result to the destination register.
ADR produces position-independent code, because the address is PC-relative.

If ADR is used to generate a target address for a BX or BLX instruction, ensure that bit[0] of the address generated is set
to 1 for correct execution.

Values of label must be within the range of —4095 to +4095 from the address in the PC.

Note: The user might have to use the .W suffix to get the maximum offset range or to generate addresses that are not
word-aligned. See “Instruction Width Selection” .

Restrictions

Rd must not be SP and must not be PC.

Condition Flags

This instruction does not change the flags.

Examples
ADR R1, Text Message ; Wite address value of a location |abelled as
; Text Message to R1

Atmel SAM G51 [DATASHEET] 77

11209C-ATARM-20-Dec-13

10.6.4.2 LDR and STR, Immediate Offset

Load and Store with immediate offset, pre-indexed immediate offset, or post-indexed immediate offset.

Syntax
op{type}{cond} Rt, [Rn {, #offset}] ; i mmedi ate of fset
op{type}{cond} Rt, [Rn, #offset]! ; pre-indexed
op{type}{cond} Rt, [Rn], #offset ; post-indexed
opD{cond} Rt, Rt2, [Rn {, #offset}] ; imredi ate offset, two words
opD{cond} Rt, Rt2, [Rn, #offset]! ; pre-indexed, two words
opD{cond} R, Rt2, [Rn], #offset ; post-indexed, two words
where:
op is one of:
LDR Load Register.
STR Store Register.
type is one of:
B unsigned byte, zero extend to 32 bits on loads.
SB signed byte, sign extend to 32 bits (LDR only).
H unsigned halfword, zero extend to 32 bits on loads.
SH signed halfword, sign extend to 32 bits (LDR only).
- omit, for word.
cond is an optional condition code, see “Conditional Execution” .
Rt is the register to load or store.
Rn is the register on which the memory address is based.
offset is an offset from Rn. If offset is omitted, the address is the contents of Rn.
Rt2 is the additional register to load or store for two-word operations.
Operation

LDR instructions load one or two registers with a value from memory.

STR instructions store one or two register values to memory.

Load and store instructions with immediate offset can use the following addressing modes:
Offset Addressing

The offset value is added to or subtracted from the address obtained from the register Rn. The result is used as the
address for the memory access. The register Rn is unaltered. The assembly language syntax for this mode is:
[Rn, #offset]

Atmel

SAM G51 [DATASHEET] 78

11209C-ATARM-20-Dec-13

Pre-indexed Addressing

The offset value is added to or subtracted from the address obtained from the register Rn. The result is used as the
address for the memory access and written back into the register Rn. The assembly language syntax for this mode is:
[Rn, #offset]!

Post-indexed Addressing

The address obtained from the register Rn is used as the address for the memory access. The offset value is added to or
subtracted from the address, and written back into the register Rn. The assembly language syntax for this mode is:
[Rn], #offset

The value to load or store can be a byte, halfword, word, or two words. Bytes and halfwords can either be signed or
unsigned. See “Address Alignment” .

The table below shows the ranges of offset for immediate, pre-indexed and post-indexed forms.

Table 10-18. Offset Ranges

Instruction Type Immediate Offset Pre-indexed Post-indexed
Word, halfword, signed
halfword, byte, or signed byte -255 to 4095 -255 to 255 -255 to 255
Two words multiple of 4 in the multiple of 4 in the multiple of 4 in the
range -1020 to 1020 | range -1020 to 1020 | range -1020 to 1020
Restrictions

For load instructions:

e Rtcan be SP or PC for word loads only

e Rt must be different from Rt2 for two-word loads

e Rn must be different from Rt and Rt2 in the pre-indexed or post-indexed forms.
When Rt is PC in a word load instruction:

e Bit[0] of the loaded value must be 1 for correct execution

e A branch occurs to the address created by changing bit[0] of the loaded value to 0

e If the instruction is conditional, it must be the last instruction in the IT block.
For store instructions:

e Rtcan be SP for word stores only

e Rt mustnot be PC

e Rn must not be PC

e Rn must be different from Rt and Rt2 in the pre-indexed or post-indexed forms.

Condition Flags
These instructions do not change the flags.

Atmel SAM G51 [DATASHEET] 79

11209C-ATARM-20-Dec-13

Examples

LDR R8,
LDRNE R2,
STR R2,
STRH R3,
LDRD R8,
STRD RO,

Atmel

[R10]
[R5, #960] !

[RO, #const - st ruc]

[R4], #4
RO, [R3, #0x20]
Rl, [R8], #-16

Loads R8 fromthe address in R10.

Loads (conditionally) R2 froma word

960 bytes above the address in R5, and
increnents R5 by 960.

const-struc is an expression eval uating
to a constant in the range 0-4095.

Store R3 as halfword data into address in
R4, then increment R4 by 4

Load R8 froma word 32 bytes above the
address in R3, and load RO froma word 36
byt es above the address in R3

Store RO to address in R8, and store Rl to
a word 4 bytes above the address in RS,
and then decrement R8 by 16.

SAM G51 [DATASHEET] 80

11209C-ATARM-20-Dec-13

10.6.4.3 LDR and STR, Register Offset

Load and Store with register offset.

Syntax

op{type}{cond} R, [Rn, Rm{, LSL #n}]
where:
op is one of:

LDR Load Register.
STR Store Register.
type is one of:
B unsigned byte, zero extend to 32 bits on loads.
SB signed byte, sign extend to 32 bits (LDR only).
H unsigned halfword, zero extend to 32 bits on loads.
SH signed halfword, sign extend to 32 bits (LDR only).

- omit, for word.

cond is an optional condition code, see “Conditional Execution” .
Rt is the register to load or store.

Rn is the register on which the memory address is based.

Rm is a register containing a value to be used as the offset.
LSL #n is an optional shift, with n in the range 0 to 3.

Operation

LDR instructions load a register with a value from memory.
STR instructions store a register value into memory.

The memory address to load from or store to is at an offset from the register Rn. The offset is specified by the register
Rm and can be shifted left by up to 3 bits using LSL.

The value to load or store can be a byte, halfword, or word. For load instructions, bytes and halfwords can either be
signed or unsigned. See “Address Alignment” .

Restrictions

In these instructions:
e Rn must not be PC
e Rm must not be SP and must not be PC
e Rtcan be SP only for word loads and word stores
e Rt can be PC only for word loads.

When Rt is PC in a word load instruction:
e Bit[0] of the loaded value must be 1 for correct execution, and a branch occurs to this halfword-aligned address
e If the instruction is conditional, it must be the last instruction in the IT block.

Condition Flags
These instructions do not change the flags.

Examples

STR RO, [R5, R1] ; Store value of RO into an address equal to
; sumof R5 and R1

LDRSB RO, [R5, Rl1, LSL #1] ; Read byte value froman address equal to
; sumof R5 and two tines Rl, sign extended it
; to awrd value and put it in RO

Atmel SAM G51 [DATASHEET] 81

11209C-ATARM-20-Dec-13

STR RO, [R1, R2, LSL #2] ; Stores RO to an address equal to sumof Rl
:and four tinmes R2

Atmel SAM G51 [DATASHEET] 82

11209C-ATARM-20-Dec-13

10.6.4.4 LDR and STR, Unprivileged

Load and Store with unprivileged access.

Syntax

op{type}T{cond} R, [Rn {, #offset}] ; i mredi ate of fset
where:
op is one of:

LDR Load Register.
STR Store Register.
type is one of:

B unsigned byte, zero extend to 32 bits on loads.

SB signed byte, sign extend to 32 bits (LDR only).

H unsigned halfword, zero extend to 32 bits on loads.
SH signed halfword, sign extend to 32 bits (LDR only).
- omit, for word.

cond is an optional condition code, see “Conditional Execution” .
Rt is the register to load or store.

Rn is the register on which the memory address is based.
offset is an offset from Rn and can be 0 to 255.

If offset is omitted, the address is the value in Rn.
Operation

These load and store instructions perform the same function as the memory access instructions with immediate offset,
see “‘LDR and STR, Immediate Offset” . The difference is that these instructions have only unprivileged access even
when used in privileged software.

When used in unprivileged software, these instructions behave in exactly the same way as normal memory access
instructions with immediate offset.

Restrictions

In these instructions:
e Rn must not be PC
e Rt must not be SP and must not be PC.

Condition Flags

These instructions do not change the flags.

Examples
STRBTEQ R4, [R7] ; Conditionally store least significant byte in

; R4 to an address in R7, with unprivil eged access
LDRHT R2, [R2, #8] ; Load hal fword val ue froman address equal to

; sumof R2 and 8 into R2, with unprivil eged access

Atmel SAM G51 [DATASHEET] 83

11209C-ATARM-20-Dec-13

10.6.4.5 LDR, PC-relative

Load register from memory.

Syntax
LDR{type}{cond} Rt, | abel
LDRD{ cond} Rt, Rt2, |abel ; Load two words
where:
type is one of:
B unsigned byte, zero extend to 32 bits.

SB signed byte, sign extend to 32 bits.
H unsigned halfword, zero extend to 32 bits.
SH signed halfword, sign extend to 32 bits.

- omit, for word.

cond is an optional condition code, see “Conditional Execution” .
Rt is the register to load or store.

Rt2 is the second register to load or store.

label is a PC-relative expression. See “PC-relative Expressions” .
Operation

LDR loads a register with a value from a PC-relative memory address. The memory address is specified by a label or by
an offset from the PC.

The value to load or store can be a byte, halfword, or word. For load instructions, bytes and halfwords can either be
signed or unsigned. See “Address Alignment” .

label must be within a limited range of the current instruction. The table below shows the possible offsets between label

and the PC.

Table 10-19. Offset Ranges
Instruction Type Offset Range
Word, halfword, signed halfword, byte, signed byte -4095 to 4095
Two words -1020 to 1020

The user might have to use the .W suffix to get the maximum offset range. See “Instruction Width Selection” .
Restrictions
In these instructions:

e Rtcan be SP or PC only for word loads

e Rt2 must not be SP and must not be PC

e Rt must be different from Rt2.

Atmel SAM G51 [DATASHEET] 84

11209C-ATARM-20-Dec-13

When Rt is PC in a word load instruction:
e Bit[0] of the loaded value must be 1 for correct execution, and a branch occurs to this halfword-aligned address
e If the instruction is conditional, it must be the last instruction in the IT block.

Condition Flags

These instructions do not change the flags.

Examples
LDR RO, LookUpTabl e ; Load RO with a word of data from an address

; labelled as LookUpTabl e
LDRSB R7, | ocal data ; Load a byte value froman address |abelled

; as localdata, sign extend it to a word

; value, and put it in R7

SAM G51 [DATASHEET 85
A t m eL 112(!:90—ATARM—20—Dec—11

10.6.4.6 LDMand STM

Load and Store Multiple registers.

Syntax

op{addr_node}{cond} Rn{!}, reglist
where:
op is one of:

LDM Load Multiple registers.
STM Store Multiple registers.

addr_mode is any one of the following:

1A Increment address After each access. This is the default.
DB Decrement address Before each access.
cond is an optional condition code, see “Conditional Execution” .
Rn is the register on which the memory addresses are based.

! is an optional writeback suffix.
If I is present, the final address, that is loaded from or stored to, is written back into Rn.

reglist is a list of one or more registers to be loaded or stored, enclosed in braces. It
can contain register ranges. It must be comma separated if it contains more
than one register or register range, see “Examples” .

LDM and LDMFD are synonyms for LDMIA. LDMFD refers to its use for popping data from Full Descending stacks.
LDMEA is a synonym for LDMDB, and refers to its use for popping data from Empty Ascending stacks.

STM and STMEA are synonyms for STMIA. STMEA refers to its use for pushing data onto Empty Ascending stacks.
STMFD is s synonym for STMDB, and refers to its use for pushing data onto Full Descending stacks

Operation

LDM instructions load the registers in reglist with word values from memory addresses based on Rn.

STM instructions store the word values in the registers in reglist to memory addresses based on Rn.

For LDM, LDMIA, LDMFD, STM, STMIA, and STMEA the memory addresses used for the accesses are at 4-byte
intervals ranging from Rn to Rn + 4 * (n-1), where n is the number of registers in reglist. The accesses happens in order
of increasing register numbers, with the lowest numbered register using the lowest memory address and the highest
number register using the highest memory address. If the writeback suffix is specified, the value of Rn + 4 * (n-1) is
written back to Rn.

For LDMDB, LDMEA, STMDB, and STMFD the memory addresses used for the accesses are at 4-byte intervals ranging
from Rn to Rn - 4 * (n-1), where n is the number of registers in reglist. The accesses happen in order of decreasing
register numbers, with the highest numbered register using the highest memory address and the lowest number register
using the lowest memory address. If the writeback suffix is specified, the value of Rn - 4 * (n-1) is written back to Rn.

The PUSH and POP instructions can be expressed in this form. See “PUSH and POP” for details.
Restrictions
In these instructions:

e Rn mustnot be PC

e reglist must not contain SP

e In any STM instruction, reglist must not contain PC

e Inany LDM instruction, reglist must not contain PC if it contains LR

e reglist must not contain Rn if the writeback suffix is specified.

When PC is in reglist in an LDM instruction:

Atmel SAM G51 [DATASHEET] 86

11209C-ATARM-20-Dec-13

e Bit[0] of the value loaded to the PC must be 1 for correct execution, and a branch occurs to this halfword-aligned
address

e |[f the instruction is conditional, it must be the last instruction in the IT block.
Condition Flags
These instructions do not change the flags.

Examples

LDM R8, { RO, R2, R9} ; LDMAis a synonymfor LDM

STMDB R1!, { R3- R6, R11, R12}

Incorrect Examples

STM R5!, {R5, R4, RO} ; Value stored for R5 is unpredictable

LDM R2, {} ; There nust be at |east one register in the |ist

Atmel SAM G51 [DATASHEET] 87

11209C-ATARM-20-Dec-13

10.6.4.7 PUSH and POP
Push registers onto, and pop registers off a full-descending stack.

Syntax
PUSH{ cond} regli st
POP{cond} regli st

where:
cond is an optional condition code, see “Conditional Execution” .
reglist is a non-empty list of registers, enclosed in braces. It can contain register

ranges. It must be comma separated if it contains more than one register or
register range.

PUSH and POP are synonyms for STMDB and LDM (or LDMIA) with the memory addresses for the access based on SP,
and with the final address for the access written back to the SP. PUSH and POP are the preferred mnemonics in these
cases.

Operation

PUSH stores registers on the stack in order of decreasing the register numbers, with the highest numbered register using
the highest memory address and the lowest numbered register using the lowest memory address.

POP loads registers from the stack in order of increasing register numbers, with the lowest numbered register using the
lowest memory address and the highest numbered register using the highest memory address.

See “LDM and STM” for more information.
Restrictions

In these instructions:
e reglist must not contain SP
e For the PUSH instruction, reglist must not contain PC
e For the POP instruction, reglist must not contain PC if it contains LR.

When PC is in reglist in a POP instruction:

e Bit[0] of the value loaded to the PC must be 1 for correct execution, and a branch occurs to this halfword-aligned
address

e Iftheinstruction is conditional, it must be the last instruction in the IT block.
Condition Flags
These instructions do not change the flags.

Examples
PUSH { RO, R4- R7}
PUSH {R2, LR}
pPOP {RO, R10, PC}

Atmel SAM G51 [DATASHEET] 88

11209C-ATARM-20-Dec-13

10.6.4.8 LDREX and STREX
Load and Store Register Exclusive.

Syntax
LDREX{cond} Rt, [Rn {, #offset}]
STREX{cond} Rd, Rt, [Rn {, #offset}]
LDREXB{cond} Rt, [Rn]
STREXB{cond} Rd, Rt, [Rn]
LDREXH{ cond} Rt, [Rn]
STREXH{ cond} Rd, Rt, [Rn]

where:
cond is an optional condition code, see “Conditional Execution” .
Rd is the destination register for the returned status.
Rt is the register to load or store.
Rn is the register on which the memory address is based.
offset is an optional offset applied to the value in Rn.

If offset is omitted, the address is the value in Rn.
Operation

LDREX, LDREXB, and LDREXH load a word, byte, and halfword respectively from a memory address.

STREX, STREXB, and STREXH attempt to store a word, byte, and halfword respectively to a memory address. The
address used in any Store-Exclusive instruction must be the same as the address in the most recently executed Load-
exclusive instruction. The value stored by the Store-Exclusive instruction must also have the same data size as the value
loaded by the preceding Load-exclusive instruction. This means software must always use a Load-exclusive instruction
and a matching Store-Exclusive instruction to perform a synchronization operation, see “Synchronization Primitives” .

If an Store-Exclusive instruction performs the store, it writes 0 to its destination register. If it does not perform the store, it
writes 1 to its destination register. If the Store-Exclusive instruction writes 0 to the destination register, it is guaranteed
that no other process in the system has accessed the memory location between the Load-exclusive and Store-Exclusive
instructions.

For reasons of performance, keep the number of instructions between corresponding Load-Exclusive and Store-
Exclusive instruction to a minimum.

The result of executing a Store-Exclusive instruction to an address that is different from that used in the preceding Load-
Exclusive instruction is unpredictable.
Restrictions
In these instructions:
e Donotuse PC
e Do not use SP for Rd and Rt
e For STREX, Rd must be different from both Rt and Rn
e The value of offset must be a multiple of four in the range 0-1020.
Condition Flags

These instructions do not change the flags.

Examples
MoV R1, #0x1 ; Initialize the ‘lock taken” value try
LDREX RO, [LockAddr] ; Load the | ock val ue
cwP RO, #0 ; I's the lock free?
ITT EQ ; I T instruction for STREXEQ and CVPEQ

STREXEQ RO, R1, [LockAddr] ; Try and claimthe |ock

Atmel SAM G51 [DATASHEET] 89

11209C-ATARM-20-Dec-13

CVMPEQ RO, #0 ; Did this succeed?
BNE try ; No — try again
;. Yes — we have the | ock

Atmel SAM G51 [DATASHEET] 90

11209C-ATARM-20-Dec-13

10.6.4.9 CLREX

Clear Exclusive.

Syntax
CLREX{ cond}
where:
cond is an optional condition code, see “Conditional Execution” .
Operation

Use CLREX to make the next STREX, STREXB, or STREXH instruction write a 1 to its destination register and fail to
perform the store. It is useful in exception handler code to force the failure of the store exclusive if the exception occurs
between a load exclusive instruction and the matching store exclusive instruction in a synchronization operation.

See “Synchronization Primitives” for more information.
Condition Flags
These instructions do not change the flags.

Examples
CLREX

Atmel SAM G51 [DATASHEET] 91

11209C-ATARM-20-Dec-13

10.6.5 General Data Processing Instructions

The table below shows the data processing instructions.

Table 10-20. Data Processing Instructions

Mnemonic Description

ADC Add with Carry

ADD Add

ADDW Add

AND Logical AND

ASR Arithmetic Shift Right

BIC Bit Clear

CLz Count leading zeros

CMN Compare Negative

CMP Compare

EOR Exclusive OR

LSL Logical Shift Left

LSR Logical Shift Right

MOV Move

MOVT Move Top

MOVW Move 16-bit constant

MVN Move NOT

ORN Logical OR NOT

ORR Logical OR

RBIT Reverse Bits

REV Reverse byte order in a word

REV16 Reverse byte order in each halfword
REVSH Reverse byte order in bottom halfword and sign extend
ROR Rotate Right

RRX Rotate Right with Extend

RSB Reverse Subtract

SADD16 Signed Add 16

SADDS8 Signed Add 8

SASX Signed Add and Subtract with Exchange
SSAX Signed Subtract and Add with Exchange
SBC Subtract with Carry

SHADD16 Signed Halving Add 16

SHADDS Signed Halving Add 8

SHASX Signed Halving Add and Subtract with Exchange
SHSAX Signed Halving Subtract and Add with Exchange

Atmel SAM G51 [DATASHEET] 92

11209C-ATARM-20-Dec-13

Table 10-20. Data Processing Instructions (Continued)

Mnemonic Description

SHSUB16 Signed Halving Subtract 16

SHSUBS8 Signed Halving Subtract 8

SSUB16 Signed Subtract 16

SSUBS8 Signed Subtract 8

SUB Subtract

SUBW Subtract

TEQ Test Equivalence

TST Test

UADD16 Unsigned Add 16

UADDS8 Unsigned Add 8

UASX Unsigned Add and Subtract with Exchange

USAX Unsigned Subtract and Add with Exchange
UHADD16 Unsigned Halving Add 16

UHADDS8 Unsigned Halving Add 8

UHASX Unsigned Halving Add and Subtract with Exchange
UHSAX Unsigned Halving Subtract and Add with Exchange
UHSUB16 Unsigned Halving Subtract 16

UHSUBS8 Unsigned Halving Subtract 8

USADS8 Unsigned Sum of Absolute Differences

USADAS Unsigned Sum of Absolute Differences and Accumulate
USUB16 Unsigned Subtract 16

UsuBS8 Unsigned Subtract 8

Atmel SAM G51 [DATASHEET] 93

11209C-ATARM-20-Dec-13

10.6.5.1 ADD, ADC, SUB, SBC, and RSB
Add, Add with carry, Subtract, Subtract with carry, and Reverse Subtract.

Syntax
op{S}{cond} {Rd,} Rn, Operand2
op{cond} {Rd,} Rn, #i mm2 ; ADD and SUB only
where:
op is one of:
ADD Add.
ADC Add with Carry.
SUB Subtract.
SBC Subtract with Carry.
RSB Reverse Subtract.
S is an optional suffix. If S is specified, the condition code flags are updated on the result of the operation,
see “Conditional Execution” .
cond is an optional condition code, see “Conditional Execution” .
Rd is the destination register. If Rd is omitted, the destination register is Rn.
Rn is the register holding the first operand.
Operand2 is a flexible second operand. See “Flexible Second Operand” for details of the
options.
imm12 is any value in the range 0—4095.
Operation

The ADD instruction adds the value of Operand2 or imm12 to the value in Rn.
The ADC instruction adds the values in Rn and Operand2, together with the carry flag.
The SUB instruction subtracts the value of Operand2 or imm12 from the value in Rn.

The SBC instruction subtracts the value of Operand2 from the value in Rn. If the carry flag is clear, the result is reduced
by one.

The RSB instruction subtracts the value in Rn from the value of Operand2. This is useful because of the wide range of
options for Operand2.

Use ADC and SBC to synthesize multiword arithmetic, see Multiword arithmetic examples on.

See also “ADR”.

Note: ADDW is equivalent to the ADD syntax that uses the imm12 operand. SUBW is equivalent to the SUB syntax
that uses the imm12 operand.

Restrictions

In these instructions:
e Operand2 must not be SP and must not be PC
e Rd can be SP only in ADD and SUB, and only with the additional restrictions:
e Rn must also be SP
e Any shift in Operand2 must be limited to a maximum of 3 bits using LSL

e Rncan be SP only in ADD and SUB
e Rd can be PC only in the ADD{cond} PC, PC, Rm instruction where:
e The user must not specify the S suffix
e Rm must not be PC and must not be SP
e If the instruction is conditional, it must be the last instruction in the IT block
/ItmeL SAM G51 [DATASHEET] 94

11209C-ATARM-20-Dec-13

e With the exception of the ADD{cond} PC, PC, Rm instruction, Rn can be PC only in ADD and SUB, and only with
the additional restrictions:

e The user must not specify the S suffix
e The second operand must be a constant in the range 0 to 4095.

e Note: When using the PC for an addition or a subtraction, bits[1:0] of the PC are rounded to 0b00 before
performing the calculation, making the base address for the calculation word-aligned.

e Note: To generate the address of an instruction, the constant based on the value of the PC must be
adjusted. ARM recommends to use the ADR instruction instead of ADD or SUB with Rn equal to the PC,
because the assembler automatically calculates the correct constant for the ADR instruction.

When Rd is PC in the ADD{cond} PC, PC, Rm instruction:
e Bit[0] of the value written to the PC is ignored
e A branch occurs to the address created by forcing bit[0] of that value to 0.

Condition Flags

If S is specified, these instructions update the N, Z, C and V flags according to the result.

Examples
ADD R2, Rl, R3 ; Sets the flags on the result
SUBS R8, R6, #240 ; Subtracts contents of R4 from 1280
RSB R4, R4, #1280 ; Only executed if C flag set and Z
ADCH| R11, RO, R3 ; flag clear.

Multiword Arithmetic Examples

The example below shows two instructions that add a 64-bit integer contained in R2 and R3 to another 64-bit integer
contained in RO and R1, and place the result in R4 and R5.

64-bit Addition Example
ADDS R4, RO, R2 ; add the least significant words
ADC R5, R1, R3 ; add the nost significant words with carry

Multiword values do not have to use consecutive registers. The example below shows instructions that subtract a 96-bit
integer contained in R9, R1, and R11 from another contained in R6, R2, and R8. The example stores the result in R6, R9,

and R2.
96-bit Subtraction Example
SUBS R6, R6, RO ; subtract the least significant words
SBCS RO, R2, Rl ; subtract the middle words with carry
SBC R2, R8, R11 ; subtract the nost significant words with carry

Atmel SAM G51 [DATASHEET] 95

11209C-ATARM-20-Dec-13

10.6.5.2 AND, ORR, EOR, BIC, and ORN
Logical AND, OR, Exclusive OR, Bit Clear, and OR NOT.

Syntax
op{S}{cond} {Rd,} Rn, Operand2

where:
op is one of:
AND logical AND.
ORR logical OR, or bit set.
EOR logical Exclusive OR.
BIC logical AND NOT, or bit clear.
ORN logical OR NOT.

S is an optional suffix. If S is specified, the condition code flags are updated on the result of the operation,
see “Conditional Execution” .

cond is an optional condition code, see “Conditional Execution” .

Rd is the destination register.

Rn is the register holding the first operand.

Operand2 is a flexible second operand. See “Flexible Second Operand” for details of the
options

Operation

The AND, EOR, and ORR instructions perform bitwise AND, Exclusive OR, and OR operations on the values in Rn and
Operand2.

The BIC instruction performs an AND operation on the bits in Rn with the complements of the corresponding bits in the
value of Operand?2.

The ORN instruction performs an OR operation on the bits in Rn with the complements of the corresponding bits in the
value of Operand2.

Restrictions
Do not use SP and do not use PC.
Condition Flags

If S is specified, these instructions:
e Update the N and Z flags according to the result
e Can update the C flag during the calculation of Operand2, see “Flexible Second Operand”
e Do not affect the V flag.

Atmel SAM G51 [DATASHEET] 96

11209C-ATARM-20-Dec-13

Examples
AND R9, R2, #OxFF0O
ORREQ R2, RO, R5
ANDS R9, R8, #0x19
ECRS R7, R11, #0x18181818
BI C RO, R1, #Oxab
ORN R7, R11, R14, ROR #4

ORNS R7, R11, R14, ASR #32

Atmel SAM G51 [DATASHEET] 97

11209C-ATARM-20-Dec-13

10.6.5.3 ASR, LSL, LSR, ROR, and RRX
Arithmetic Shift Right, Logical Shift Left, Logical Shift Right, Rotate Right, and Rotate Right with Extend.

Syntax
op{S}{cond} Rd, Rm Rs
op{S}{cond} Rd, Rm #n
RRX{ S}{cond} Rd, Rm

where:

op is one of:
ASR Arithmetic Shift Right.
LSL Logical Shift Left.
LSR Logical Shift Right.
ROR Rotate Right.

S is an optional suffix. If S is specified, the condition code flags are updated on the result of the operation,
see “Conditional Execution” .

Rd is the destination register.
Rm is the register holding the value to be shifted.
Rs is the register holding the shift length to apply to the value in Rm. Only the least

significant byte is used and can be in the range 0 to 255.
n is the shift length. The range of shift length depends on the instruction:
ASR shift length from 1 to 32
LSL shift length from O to 31
LSR shift length from 1 to 32
ROR shift length from 0 to 31

MOVS Rd, Rm is the preferred syntax for LSLS Rd, Rm, #0.

Operation

ASR, LSL, LSR, and ROR move the bits in the register Rm to the left or right by the number of places specified by
constant n or register Rs.

RRX moves the bits in register Rm to the right by 1.

In all these instructions, the result is written to Rd, but the value in register Rm remains unchanged. For details on what
result is generated by the different instructions, see “Shift Operations” .

Restrictions
Do not use SP and do not use PC.
Condition Flags
If S is specified:
e These instructions update the N and Z flags according to the result
e The Cflag is updated to the last bit shifted out, except when the shift length is 0, see “Shift Operations” .

Examples
ASR R7, R8, #9 ; Arithnetic shift right by 9 bits
SLS Rl, R2, #3 ; Logical shift left by 3 bits with flag update
LSR R4, R5, #6 ; Logical shift right by 6 bits
ROR R4, R5, R6 ; Rotate right by the value in the bottombyte of R6
RRX R4, R5 ; Rotate right with extend.
/ItmeL SAM G51 [DATASHEET] 98

11209C-ATARM-20-Dec-13

10.6.54 CLzZ

Count Leading Zeros.

Syntax
CLZ{cond} Rd, Rm
where:
cond is an optional condition code, see “Conditional Execution” .
Rd is the destination register.
Rm is the operand register.
Operation

The CLZ instruction counts the number of leading zeros in the value in Rm and returns the result in Rd. The result value
is 32 if no bits are set and zero if bit[31] is set.

Restrictions

Do not use SP and do not use PC.
Condition Flags

This instruction does not change the flags.

Examples
CLz R4, RO
CLZNE R2, R3

Atmel SAM G51 [DATASHEET] 99

11209C-ATARM-20-Dec-13

10.6.5.5 CMP and CMN

Compare and Compare Negative.

Syntax
CvP{cond} Rn, Operand2
CWMN{ cond} Rn, Operand2
where:
cond is an optional condition code, see “Conditional Execution” .
Rn is the register holding the first operand.
Operand2 is a flexible second operand. See “Flexible Second Operand” for details of the
options
Operation

These instructions compare the value in a register with Operand2. They update the condition flags on the result, but do
not write the result to a register.

The CMP instruction subtracts the value of Operand2 from the value in Rn. This is the same as a SUBS instruction,
except that the result is discarded.

The CMN instruction adds the value of Operand2 to the value in Rn. This is the same as an ADDS instruction, except that
the result is discarded.

Restrictions

In these instructions:
e Donotuse PC
e Operand2 must not be SP.
Condition Flags
These instructions update the N, Z, C and V flags according to the result.

Examples
cwP R2, R9
CWN RO, #6400
CVPGT SP, R7, LSL #2

Atmel SAM G51 [DATASHEET] 100

11209C-ATARM-20-Dec-13

10.6.5.6 MOV and MVN
Move and Move NOT.

Syntax
MOV{ S} {cond} Rd, Operand2
MOV{cond} Rd, #i nml6
MN{ S} {cond} Rd, Operand2

where:
S is an optional suffix. If S is specified, the condition code flags are updated on the result of the operation,
see “Conditional Execution” .
cond is an optional condition code, see “Conditional Execution” .
Rd is the destination register.
Operand2 is a flexible second operand. See “Flexible Second Operand” for details of the
options
imm16 is any value in the range 0—65535.
Operation

The MOV instruction copies the value of Operand2 into Rd.
When Operand2 in a MOV instruction is a register with a shift other than LSL #0, the preferred syntax is the
corresponding shift instruction:

e ASR{SYcond} Rd, Rm, #n is the preferred syntax for MOV{S}{cond} Rd, Rm, ASR #n
LSL{SHcond} Rd, Rm, #n is the preferred syntax for MOV{S}{cond} Rd, Rm, LSL #nifn!=0
LSR{SKcond} Rd, Rm, #n is the preferred syntax for MOV{SKcond} Rd, Rm, LSR #n
ROR{S}cond} Rd, Rm, #n is the preferred syntax for MOV{S}{cond} Rd, Rm, ROR #n
RRX{SHcond} Rd, Rm is the preferred syntax for MOV{S}{cond} Rd, Rm, RRX.

Also, the MOV instruction permits additional forms of Operand2 as synonyms for shift instructions:

e MOV{SKcond} Rd, Rm, ASR Rs is a synonym for ASR{S}{cond} Rd, Rm, Rs

e MOV{SHcond} Rd, Rm, LSL Rs is a synonym for LSL{S}{cond} Rd, Rm, Rs

e MOV{SKcond} Rd, Rm, LSR Rs is a synonym for LSR{S}{cond} Rd, Rm, Rs

e MOV{SHcond} Rd, Rm, ROR Rs is a synonym for ROR{SKcond} Rd, Rm, Rs
See “ASR, LSL, LSR, ROR, and RRX" .

The MVN instruction takes the value of Operand2, performs a bitwise logical NOT operation on the value, and places the
result into Rd.

The MOVW instruction provides the same function as MOV, but is restricted to using the imm16 operand.
Restrictions
SP and PC only can be used in the MOV instruction, with the following restrictions:

e The second operand must be a register without shift

e The S suffix must not be specified.

When Rd is PC in a MOV instruction:
e Bit[0] of the value written to the PC is ignored
e A branch occurs to the address created by forcing bit[0] of that value to 0.
Though it is possible to use MOV as a branch instruction, ARM strongly recommends the use of a BX or BLX instruction
to branch for software portability to the ARM instruction set.
Condition Flags
If S is specified, these instructions:
e Update the N and Z flags according to the result

Atmel SAM G51 [DATASHEET] 101

11209C-ATARM-20-Dec-13

e Can update the C flag during the calculation of Operand2, see “Flexible Second Operand”

e Do not affect the V flag.

Examples
MOVS R11, #0x000B
R11, flags get updated
MOV Rl1, #OxFAO5

Wite value of 0x000B to

Wite value of OxFAO5 to

R1, flags are not updated

MOVS R10, R12
flags get updated

MOV R3, #23 ;

MOV R8, SP ;

MWNS R2, #OxF ;

Atmel

; Wite value in R12 to R10,
Wite value of 23 to R3

Wite value of stack pointer to R8

Wite value of OXFFFFFFFO (bitw se inverse of OxF)

to the R2 and update fl ags.

SAM G51 [DATASHEET] 102

11209C-ATARM-20-Dec-13

10.6.5.7 MOVT

Move Top.
Syntax
MOVT{ cond} Rd, #i mMmil6
where:
cond is an optional condition code, see “Conditional Execution” .
Rd is the destination register.
imm16 is a 16-bit immediate constant.
Operation

MOVT writes a 16-bit immediate value, imm16, to the top halfword, Rd[31:16], of its destination register. The write does
not affect Rd[15:0].

The MOV, MOVT instruction pair enables to generate any 32-bit constant.
Restrictions

Rd must not be SP and must not be PC.

Condition Flags

This instruction does not change the flags.

Examples
MOVT R3, #0xF123 ; Wite OxF123 to upper hal fword of R3, |ower hal fword
; and APSR are unchanged.

Atmel SAM G51 [DATASHEET] 103

11209C-ATARM-20-Dec-13

10.6.5.8 REV, REV16, REVSH, and RBIT

Reverse bytes and Reverse bits.

Syntax
op{cond} Rd, Rn
where:
op is any of:
REV Reverse byte order in a word.
REV16 Reverse byte order in each halfword independently.
REVSH Reverse byte order in the bottom halfword, and sign extend to 32 bits.
RBIT Reverse the bit order in a 32-bit word.
cond is an optional condition code, see “Conditional Execution” .
Rd is the destination register.
Rn is the register holding the operand.
Operation

Use these instructions to change endianness of data:
REV converts either:
e 32-bit big-endian data into little-endian data
e 32-hit little-endian data into big-endian data.
REV16 converts either:
e 16-bit big-endian data into little-endian data
e 16-hit little-endian data into big-endian data.
REVSH converts either:
e 16-bit signed big-endian data into 32-bit signed little-endian data
e 16-hit signed little-endian data into 32-bit signed big-endian data.
Restrictions
Do not use SP and do not use PC.
Condition Flags
These instructions do not change the flags.

Examples
REV R3, R7; Reverse byte order of value in R7 and wite it to R3
REV16 RO, RO; Reverse byte order of each 16-bit halfword in RO
REVSH RO, R5; Reverse Signed Hal fword
REVHS R3, R7; Reverse with Hi gher or Sane condition
RBIT R7, R8; Reverse bit order of value in R8 and wite the result to R7.

Atmel SAM G51 [DATASHEET] 104

11209C-ATARM-20-Dec-13

10.6.5.9 SADD16 and SADDS8
Signed Add 16 and Signed Add 8

Syntax
op{cond}{Rd,} Rn, Rm

where:

op is any of:
SADD16 Performs two 16-bit signed integer additions.
SADDS8 Performs four 8-bit signed integer additions.

cond is an optional condition code, see “Conditional Execution” .

Rd is the destination register.

Rn is the first register holding the operand.

Rm is the second register holding the operand.

Operation

Use these instructions to perform a halfword or byte add in parallel:

The SADD16 instruction:
1. Adds each halfword from the first operand to the corresponding halfword of the second operand.
2. Writes the result in the corresponding halfwords of the destination register.

The SADDS instruction:
1. Adds each byte of the first operand to the corresponding byte of the second operand.

Writes the result in the corresponding bytes of the destination register.
Restrictions

Do not use SP and do not use PC.

Condition Flags

These instructions do not change the flags.

Examples
SADD16 R1, RO ; Adds the halfwords in RO to the corresponding
; halfwords of Rl and wites to correspondi ng hal fword
; of RL.

SADD8 R4, RO, R5 ; Adds bytes of RO to the corresponding byte in R5 and
; Wwites to the corresponding byte in R4.

Atmel SAM G51 [DATASHEET] 105

11209C-ATARM-20-Dec-13

10.6.5.10 SHADD16 and SHADDS8
Signed Halving Add 16 and Signed Halving Add 8

Syntax
op{cond}{Rd,} Rn, Rm

where:
op is any of:
SHADD16 Signed Halving Add 16.
SHADDS Signed Halving Add 8.
cond is an optional condition code, see “Conditional Execution” .
Rd is the destination register.
Rn is the first operand register.
Rm is the second operand register.
Operation

Use these instructions to add 16-bit and 8-bit data and then to halve the result before writing the result to the destination
register:

The SHADD16 instruction:
1. Adds each halfword from the first operand to the corresponding halfword of the second operand.
2. Shuffles the result by one bit to the right, halving the data.
3. Writes the halfword results in the destination register.

The SHADDBS instruction:
1. Adds each byte of the first operand to the corresponding byte of the second operand.
2. Shuffles the result by one bit to the right, halving the data.
3. Writes the byte results in the destination register.

Restrictions

Do not use SP and do not use PC.

Condition Flags

These instructions do not change the flags.

Examples
SHADD16 R1, RO ; Adds hal fwords in RO to corresponding hal fword of R1
; and wites halved result to corresponding hal fword in
7 R

SHADD8 R4, RO, R5 ; Adds bytes of RO to corresponding byte in R5 and
; wites halved result to corresponding byte in R4.

Atmel SAM G51 [DATASHEET] 106

11209C-ATARM-20-Dec-13

10.6.5.11 SHASX and SHSAX
Signed Halving Add and Subtract with Exchange and Signed Halving Subtract and Add with Exchange.

Syntax
op{cond} {Rd}, Rn, Rm

where:
op is any of:

SHASX Add and Subtract with Exchange and Halving.

SHSAX Subtract and Add with Exchange and Halving.
cond is an optional condition code, see “Conditional Execution” .
Rd is the destination register.
Rn, Rm are registers holding the first and second operands.
Operation

The SHASX instruction:
1. Adds the top halfword of the first operand with the bottom halfword of the second operand.

2. Writes the halfword result of the addition to the top halfword of the destination register, shifted by one bit to the
right causing a divide by two, or halving.

3. Subtracts the top halfword of the second operand from the bottom highword of the first operand.

4. Writes the halfword result of the division in the bottom halfword of the destination register, shifted by one bit to the
right causing a divide by two, or halving.

The SHSAX instruction:

1. Subtracts the bottom halfword of the second operand from the top highword of the first operand.

2. Writes the halfword result of the addition to the bottom halfword of the destination register, shifted by one bit to the
right causing a divide by two, or halving.

3. Adds the bottom halfword of the first operand with the top halfword of the second operand.

4. Writes the halfword result of the division in the top halfword of the destination register, shifted by one bit to the right
causing a divide by two, or halving.

Restrictions

Do not use SP and do not use PC.

Condition Flags

These instructions do not affect the condition code flags.

Examples

SHASX R7, R4, R2 ; Adds top halfword of R4 to bottom hal fword of R2
; and wites halved result to top hal fword of R7
; Subtracts top hal fword of R2 from bottom hal fword of
; R4 and wites halved result to bottom hal fword of R7

SHSAX RO, R3, R5 ; Subtracts bottom hal fword of R5 fromtop hal fword
; of R3 and writes halved result to top hal fword of RO
; Adds top hal fword of R5 to bottom hal fword of R3 and
; Wwites halved result to bottom hal fword of RO.

Atmel SAM G51 [DATASHEET] 107

11209C-ATARM-20-Dec-13

10.6.5.12 SHSUB16 and SHSUBS
Signed Halving Subtract 16 and Signed Halving Subtract 8

Syntax
op{cond}{Rd,} Rn, Rm

where:
op is any of:

SHSUB16 Signed Halving Subtract 16.

SHSUBS Signed Halving Subtract 8.
cond is an optional condition code, see “Conditional Execution” .
Rd is the destination register.
Rn is the first operand register.
Rm is the second operand register.
Operation

Use these instructions to add 16-bit and 8-bit data and then to halve the result before writing the result to the destination
register:
The SHSUB16 instruction:
1. Subtracts each halfword of the second operand from the corresponding halfwords of the first operand.
2. Shuffles the result by one bit to the right, halving the data.
3. Writes the halved halfword results in the destination register.
The SHSUBBS instruction:
1. Subtracts each byte of the second operand from the corresponding byte of the first operand,
2. Shuffles the result by one bit to the right, halving the data,
3. Writes the corresponding signed byte results in the destination register.
Restrictions

Do not use SP and do not use PC.

Condition Flags
These instructions do not change the flags.

Examples
SHSUB16 R1, RO ; Subtracts hal fwords in RO from correspondi ng hal fword
; of RL and wites to corresponding hal fword of Rl
SHSUB8 R4, RO, R5 ; Subtracts bytes of RO from corresponding byte in R5,
; and wites to corresponding byte in R4.

Atmel SAM G51 [DATASHEET] 108

11209C-ATARM-20-Dec-13

10.6.5.13 SSUB16 and SSUBS8
Signed Subtract 16 and Signed Subtract 8

Syntax
op{cond}{Rd,} Rn, Rm

where:
op is any of:
SSUB16 Performs two 16-bit signed integer subtractions.
SSUB8 Performs four 8-bit signed integer subtractions.
cond is an optional condition code, see “Conditional Execution” .
Rd is the destination register.
Rn is the first operand register.
Rm is the second operand register.
Operation

Use these instructions to change endianness of data:
The SSUBL16 instruction:

1. Subtracts each halfword from the second operand from the corresponding halfword of the first operand

2. Writes the difference result of two signed halfwords in the corresponding halfword of the destination register.
The SSUBS instruction:

1. Subtracts each byte of the second operand from the corresponding byte of the first operand

2. Writes the difference result of four signed bytes in the corresponding byte of the destination register.
Restrictions
Do not use SP and do not use PC.
Condition Flags

These instructions do not change the flags.

Examples
SSUB16 R1, RO ; Subtracts hal fwords in RO from correspondi ng hal fword
; of RL and wites to corresponding hal fword of Rl
SSUB8 R4, RO, R5 ; Subtracts bytes of R5 fromcorresponding byte in
; RO, and wites to correspondi ng byte of R4.

Atmel SAM G51 [DATASHEET] 109

11209C-ATARM-20-Dec-13

10.6.5.14 SASX and SSAX
Signed Add and Subtract with Exchange and Signed Subtract and Add with Exchange.

Syntax
op{cond} {Rd}, Rm Rn

where:
op is any of:

SASX Signed Add and Subtract with Exchange.

SSAX Signed Subtract and Add with Exchange.
cond is an optional condition code, see “Conditional Execution” .
Rd is the destination register.
Rn, Rm are registers holding the first and second operands.
Operation

The SASX instruction:
1. Adds the signed top halfword of the first operand with the signed bottom halfword of the second operand.
2. Writes the signed result of the addition to the top halfword of the destination register.
3. Subtracts the signed bottom halfword of the second operand from the top signed highword of the first operand.
4. Writes the signed result of the subtraction to the bottom halfword of the destination register.

The SSAX instruction:
1. Subtracts the signed bottom halfword of the second operand from the top signed highword of the first operand.
2. Writes the signed result of the addition to the bottom halfword of the destination register.
3. Adds the signed top halfword of the first operand with the signed bottom halfword of the second operand.
4. Writes the signed result of the subtraction to the top halfword of the destination register.

Restrictions

Do not use SP and do not use PC.

Condition Flags

These instructions do not affect the condition code flags.

Examples

SASX RO, R4, R5 ; Adds top halfword of R4 to bottom hal fword of R5 and
; Wwites to top hal fword of RO
; Subtracts bottom hal fword of RS fromtop hal fword of R4
; and wites to bottom hal fword of RO

SSAX R7, R3, R2 ; Subtracts top hal fword of R2 from bottom hal fword of R3
; and wites to bottom hal fword of R7
; Adds top hal fword of R3 with bottom hal fword of R2 and
; Wwites to top hal fword of R7.

Atmel SAM G51 [DATASHEET] 110

11209C-ATARM-20-Dec-13

10.6.5.15 TST and TEQ
Test bits and Test Equivalence.

Syntax
TST{cond} Rn, Operand2
TEQ cond} Rn, Operand2

where

cond is an optional condition code, see “Conditional Execution” .

Rn is the register holding the first operand.

Operand2 is a flexible second operand. See “Flexible Second Operand” for details of the
options

Operation

These instructions test the value in a register against Operand2. They update the condition flags based on the result, but
do not write the result to a register.

The TST instruction performs a bitwise AND operation on the value in Rn and the value of Operand2. This is the same as
the ANDS instruction, except that it discards the result.

To test whether a bit of Rn is 0 or 1, use the TST instruction with an Operand2 constant that has that bit set to 1 and all
other bits cleared to O.

The TEQ instruction performs a bitwise Exclusive OR operation on the value in Rn and the value of Operand2. This is the
same as the EORS instruction, except that it discards the result.

Use the TEQ instruction to test if two values are equal without affecting the V or C flags.

TEQ is also useful for testing the sign of a value. After the comparison, the N flag is the logical Exclusive OR of the sign
bits of the two operands.
Restrictions
Do not use SP and do not use PC.
Condition Flags
These instructions:

e Update the N and Z flags according to the result

e Can update the C flag during the calculation of Operand2, see “Flexible Second Operand”

e Do not affect the V flag.
Examples

TST RO, #0x3F8 ; Perform bitw se AND of RO val ue to Ox3F8,
; APSR i s updated but result is discarded

TEQEQ R10, RO ; Conditionally test if value in RLO is equal to
; value in RO, APSR is updated but result is discarded.

Atmel SAM G51 [DATASHEET] 111

11209C-ATARM-20-Dec-13

10.6.5.16 UADD16 and UADDS8
Unsigned Add 16 and Unsigned Add 8

Syntax
op{cond}{Rd,} Rn, Rm

where:
op is any of:
UADD16 Performs two 16-bit unsigned integer additions.
UADDS8 Performs four 8-bit unsigned integer additions.
cond is an optional condition code, see “Conditional Execution” .
Rd is the destination register.
Rn is the first register holding the operand.
Rm is the second register holding the operand.
Operation

Use these instructions to add 16- and 8-bit unsigned data:
The UADD16 instruction:
1. Adds each halfword from the first operand to the corresponding halfword of the second operand.
2. Writes the unsigned result in the corresponding halfwords of the destination register.
The UADD16 instruction:
1. Adds each byte of the first operand to the corresponding byte of the second operand.
2. Writes the unsigned result in the corresponding byte of the destination register.
Restrictions
Do not use SP and do not use PC.
Condition Flags
These instructions do not change the flags.

Examples
UADD16 R1, RO ; Adds halfwords in RO to corresponding hal fword of R1,
; wites to corresponding hal fword of R1
UADD8 R4, RO, R5 ; Adds bytes of RO to corresponding byte in R5 and
; Wites to corresponding byte in R4.

Atmel SAM G51 [DATASHEET] 112

11209C-ATARM-20-Dec-13

10.6.5.17 UASX and USAX
Add and Subtract with Exchange and Subtract and Add with Exchange.

Syntax
op{cond} {Rd}, Rn, Rm

where:
op is one of:

UASX Add and Subtract with Exchange.

USAX Subtract and Add with Exchange.
cond is an optional condition code, see “Conditional Execution” .
Rd is the destination register.
Rn, Rm are registers holding the first and second operands.
Operation

The UASX instruction:
1. Subtracts the top halfword of the second operand from the bottom halfword of the first operand.
2. Writes the unsigned result from the subtraction to the bottom halfword of the destination register.
3. Adds the top halfword of the first operand with the bottom halfword of the second operand.
4. Writes the unsigned result of the addition to the top halfword of the destination register.

The USAX instruction:
1. Adds the bottom halfword of the first operand with the top halfword of the second operand.
2. Writes the unsigned result of the addition to the bottom halfword of the destination register.
3. Subtracts the bottom halfword of the second operand from the top halfword of the first operand.
4. Writes the unsigned result from the subtraction to the top halfword of the destination register.

Restrictions

Do not use SP and do not use PC.

Condition Flags

These instructions do not affect the condition code flags.

Examples

UASX RO, R4, R5 ; Adds top halfword of R4 to bottom hal fword of R5 and
; Wwites to top hal fword of RO
; Subtracts bottom hal fword of R5 fromtop hal fword of RO
; and wites to bottom hal fword of RO

USAX R7, R3, R2 ; Subtracts top halfword of R2 frombottom hal fword of R3
; and wites to bottom hal fword of R7
; Adds top hal fword of R3 to bottom hal fword of R2 and
; Wwites to top hal fword of R7.

Atmel SAM G51 [DATASHEET] 113

11209C-ATARM-20-Dec-13

10.6.5.18 UHADD16 and UHADDS8
Unsigned Halving Add 16 and Unsigned Halving Add 8

Syntax
op{cond}{Rd,} Rn, Rm

where:
op is any of:
UHADD16 Unsigned Halving Add 16.
UHADDS8 Unsigned Halving Add 8.
cond is an optional condition code, see “Conditional Execution” .
Rd is the destination register.
Rn is the register holding the first operand.
Rm is the register holding the second operand.
Operation

Use these instructions to add 16- and 8-bit data and then to halve the result before writing the result to the destination
register:
The UHADD16 instruction:
1. Adds each halfword from the first operand to the corresponding halfword of the second operand.
2. Shuffles the halfword result by one bit to the right, halving the data.
3. Writes the unsigned results to the corresponding halfword in the destination register.
The UHADDS instruction:
1. Adds each byte of the first operand to the corresponding byte of the second operand.
2. Shuffles the byte result by one bit to the right, halving the data.
3. Writes the unsigned results in the corresponding byte in the destination register.
Restrictions
Do not use SP and do not use PC.
Condition Flags
These instructions do not change the flags.

Examples
UHADD16 R7, R3 ; Adds halfwords in R7 to corresponding hal fword of R3
; and wites halved result to correspondi ng hal f word
; in RY7

UHADD8 R4, RO, R5 ; Adds bytes of RO to corresponding byte in R5 and
; wites halved result to corresponding byte in R4.

Atmel SAM G51 [DATASHEET] 114

11209C-ATARM-20-Dec-13

10.6.5.19 UHASX and UHSAX
Unsigned Halving Add and Subtract with Exchange and Unsigned Halving Subtract and Add with Exchange.

Syntax
op{cond} {Rd}, Rn, Rm

where:
op is one of:

UHASX Add and Subtract with Exchange and Halving.

UHSAX Subtract and Add with Exchange and Halving.
cond is an optional condition code, see “Conditional Execution” .
Rd is the destination register.
Rn, Rm are registers holding the first and second operands.
Operation

The UHASX instruction:

1. Adds the top halfword of the first operand with the bottom halfword of the second operand.
Shifts the result by one bit to the right causing a divide by two, or halving.
Writes the halfword result of the addition to the top halfword of the destination register.
Subtracts the top halfword of the second operand from the bottom highword of the first operand.
Shifts the result by one bit to the right causing a divide by two, or halving.

6. Writes the halfword result of the division in the bottom halfword of the destination register.
The UHSAX instruction:

1. Subtracts the bottom halfword of the second operand from the top highword of the first operand.
Shifts the result by one bit to the right causing a divide by two, or halving.
Writes the halfword result of the subtraction in the top halfword of the destination register.
Adds the bottom halfword of the first operand with the top halfword of the second operand.
Shifts the result by one bit to the right causing a divide by two, or halving.
6. Writes the halfword result of the addition to the bottom halfword of the destination register.

a M e

a s~ WD

Restrictions
Do not use SP and do not use PC.
Condition Flags

These instructions do not affect the condition code flags.

Examples

UHASX R7, R4, R2 ; Adds top halfword of R4 with bottom hal fword of R2
; and wites halved result to top hal fwrd of R7
; Subtracts top hal fword of R2 from bottom hal fword of
; R7 and wites halved result to bottom hal fword of R7

UHSAX RO, R3, R5 ; Subtracts bottom halfword of R5 fromtop hal fword of
; R3 and wites halved result to top hal fword of RO
; Adds top halfword of R5 to bottom hal fword of R3 and
; wites halved result to bottom hal fword of RO.

Atmel SAM G51 [DATASHEET] 115

11209C-ATARM-20-Dec-13

10.6.5.20 UHSUB16 and UHSUBS
Unsigned Halving Subtract 16 and Unsigned Halving Subtract 8

Syntax
op{cond}{Rd,} Rn, Rm
where:
op is any of:
UHSUB16 Performs two unsigned 16-bit integer additions, halves the results,
and writes the results to the destination register.
UHSUBS Performs four unsigned 8-bit integer additions, halves the results, and
writes the results to the destination register.
cond is an optional condition code, see “Conditional Execution” .
Rd is the destination register.
Rn is the first register holding the operand.
Rm is the second register holding the operand.
Operation

Use these instructions to add 16-bit and 8-bit data and then to halve the result before writing the result to the destination
register:
The UHSUBL16 instruction:
1. Subtracts each halfword of the second operand from the corresponding halfword of the first operand.
2. Shuffles each halfword result to the right by one bit, halving the data.
3. Writes each unsigned halfword result to the corresponding halfwords in the destination register.
The UHSUBS instruction:
1. Subtracts each byte of second operand from the corresponding byte of the first operand.
2. Shuffles each byte result by one bit to the right, halving the data.
3. Writes the unsigned byte results to the corresponding byte of the destination register.
Restrictions
Do not use SP and do not use PC.
Condition Flags
These instructions do not change the flags.

Examples
UHSUB16 R1, RO ; Subtracts hal fwords in RO from correspondi ng hal fword of
; RL and wites halved result to corresponding halfword in Rl
UHSUB8 R4, RO, R5 ; Subtracts bytes of R5 fromcorresponding byte in RO and
; wites halved result to corresponding byte in R4.

10.6.5.21 SEL
Select Bytes. Selects each byte of its result from either its first operand or its second operand, according to the values of
the GE flags.
Syntax
SEL{<c>}{<g>} {<Rd>} <Rn>, <RnP
where:
c, q are standard assembler syntax fields.
Rd is the destination register.
Rn is the first register holding the operand.

Atmel SAM G51 [DATASHEET] 116

11209C-ATARM-20-Dec-13

Rm is the second register holding the operand.
Operation

The SEL instruction:
1. Reads the value of each bit of APSR.GE.
2. Depending on the value of APSR.GE, assigns the destination register the value of either the first or second oper-
and register.

Restrictions

None.

Condition Flags

These instructions do not change the flags.

Examples
SADD16 RO, R1, R2 ; Set GE bits based on result
SEL RO, RO, R3 ; Select bytes fromRO or R3, based on GE

SAM G51 [DATASHEET] 117
/4 t m eL 11209C-ATARM—20-Dec-13

10.6.5.22 USADS8

Unsigned Sum of Absolute Differences

Syntax
USAD8{cond}{Rd,} Rn, Rm
where:
cond is an optional condition code, see “Conditional Execution” .
Rd is the destination register.
Rn is the first operand register.
Rm is the second operand register.
Operation

The USADS instruction:
1. Subtracts each byte of the second operand register from the corresponding byte of the first operand register.
2. Adds the absolute values of the differences together.
3. Writes the result to the destination register.
Restrictions
Do not use SP and do not use PC.
Condition Flags
These instructions do not change the flags.
Examples
USAD8 R1, R4, RO ; Subtracts each byte in RO fromcorrespondi ng byte of R4
; adds the differences and wites to R1

USAD8 RO, R5 ; Subtracts bytes of R5 from corresponding byte in RO,
; adds the differences and wites to RO.

Atmel SAM G51 [DATASHEET] 118

11209C-ATARM-20-Dec-13

10.6.5.23 USADAS
Unsigned Sum of Absolute Differences and Accumulate

Syntax
USADA8{cond}{Rd,} R, Rm Ra
where:
cond is an optional condition code, see “Conditional Execution” .
Rd is the destination register.
Rn is the first operand register.
Rm is the second operand register.
Ra is the register that contains the accumulation value.
Operation

The USADAS instruction:

1. Subtracts each byte of the second operand register from the corresponding byte of the first operand register.
2. Adds the unsigned absolute differences together.
3. Adds the accumulation value to the sum of the absolute differences.
4. Writes the result to the destination register.
Restrictions

Do not use SP and do not use PC.

Condition Flags

These instructions do not change the flags.

Examples
USADA8 R1, RO, R6 ; Subtracts bytes in RO from correspondi ng hal fword of Rl

: adds differences, adds value of R6, wites to Rl

USADA8 R4, RO, R5, R2 ; Subtracts bytes of R5 from corresponding byte in RO

Atmel

adds differences, adds value of R2 wites to R4.

SAM G51 [DATASHEET] 119

11209C-ATARM-20-Dec-13

10.6.5.24 USUB16 and USUBS8
Unsigned Subtract 16 and Unsigned Subtract 8

Syntax
op{cond}{Rd,} Rn, Rm

where
op is any of:

USUB16 Unsigned Subtract 16.

USUBS8 Unsigned Subtract 8.
cond is an optional condition code, see “Conditional Execution” .
Rd is the destination register.
Rn is the first operand register.
Rm is the second operand register.
Operation

Use these instructions to subtract 16-bit and 8-bit data before writing the result to the destination register:

The USUB16 instruction:
1. Subtracts each halfword from the second operand register from the corresponding halfword of the first operand
register.
2. Writes the unsigned result in the corresponding halfwords of the destination register.
The USUBS instruction:
1. Subtracts each byte of the second operand register from the corresponding byte of the first operand register.
2. Writes the unsigned byte result in the corresponding byte of the destination register.
Restrictions
Do not use SP and do not use PC.
Condition Flags
These instructions do not change the flags.

Examples
USUB16 R1, RO ; Subtracts hal fwords in RO from corresponding hal fword of RL
; and wites to corresponding hal fword in RIUSUB8 R4, RO, R5
; Subtracts bytes of R5 from corresponding byte in RO and
; wites to the corresponding byte in R4.

Atmel SAM G51 [DATASHEET] 120

11209C-ATARM-20-Dec-13

10.6.6 Multiply and Divide Instructions

The table below shows the multiply and divide instructions.

Table 10-21. Multiply and Divide Instructions

Mnemonic Description

MLA Multiply with Accumulate, 32-bit result

MLS Multiply and Subtract, 32-bit result

MUL Multiply, 32-bit result

SDIV Signed Divide

SMLA[B,T] Signed Multiply Accumulate (halfwords)

SMLAD, SMLADX Signed Multiply Accumulate Dual

SMLAL Signed Multiply with Accumulate (32 x 32 + 64), 64-bit result
SMLAL[B,T] Signed Multiply Accumulate Long (halfwords)
SMLALD, SMLALDX Signed Multiply Accumulate Long Dual
SMLAWIB|T] Signed Multiply Accumulate (word by halfword)
SMLSD Signed Multiply Subtract Dual

SMLSLD Signed Multiply Subtract Long Dual

SMMLA Signed Most Significant Word Multiply Accumulate

SMMLS, SMMLSR

Signed Most Significant Word Multiply Subtract

SMUAD, SMUADX

Signed Dual Multiply Add

SMULI[B,T] Signed Multiply (word by halfword)
SMMUL, SMMULR Signed Most Significant Word Multiply
SMULL Signed Multiply (32x32), 64-bit result

SMULWB, SMULWT

Signed Multiply (word by halfword)

SMUSD, SMUSDX

Signed Dual Multiply Subtract

ubIv Unsigned Divide

UMAAL Unsigned Multiply Accumulate Accumulate Long (32 x 32 + 32 + 32), 64-bit result
UMLAL Unsigned Multiply with Accumulate (32 x 32 + 64), 64-bit result

UMULL Unsigned Multiply (32 x 32), 64-bit result

Atmel

SAM G51 [DATASHEET]

11209C-ATARM-20-Dec-13

121

10.6.6.1 MUL, MLA, and MLS
Multiply, Multiply with Accumulate, and Multiply with Subtract, using 32-bit operands, and producing a 32-bit result.

Syntax
MUL{S}{cond} {Rd,} Rn, Rm; Miltiply
M.A{cond} Rd, Rn, Rm Ra ; Miltiply with accumul ate
M.S{cond} Rd, Rn, Rm Ra ; Miltiply with subtract
where:
cond is an optional condition code, see “Conditional Execution” .
S is an optional suffix. If S is specified, the condition code flags are updated on the result of the operation,
see “Conditional Execution” .
Rd is the destination register. If Rd is omitted, the destination register is Rn.
Rn, Rm are registers holding the values to be multiplied.
Ra is a register holding the value to be added or subtracted from.
Operation

The MUL instruction multiplies the values from Rn and Rm, and places the least significant 32 bits of the result in Rd.

The MLA instruction multiplies the values from Rn and Rm, adds the value from Ra, and places the least significant 32
bits of the result in Rd.

The MLS instruction multiplies the values from Rn and Rm, subtracts the product from the value from Ra, and places the
least significant 32 bits of the result in Rd.

The results of these instructions do not depend on whether the operands are signed or unsigned.
Restrictions
In these instructions, do not use SP and do not use PC.

If the S suffix is used with the MUL instruction:
e Rd, Rn, and Rm must all be in the range RO to R7
e Rd must be the same as Rm
e The cond suffix must not be used.

Condition Flags

If S is specified, the MUL instruction:
e Updates the N and Z flags according to the result
e Does not affect the C and V flags.

Examples
MJUL R10, R2, RS ; Multiply, RL0O = R2 x RS
M.A R10, R2, Rl, R5 ; Multiply with accunulate, RI0 = (R2 x Rl) + R5
MJULS RO, R2, R2 ; Multiply with flag update, RO = R2 x R2
MIULLT R2, R3, R2 ; Conditionally multiply, RR = R3 x R2
M.S R4, R5, R6, R7 ; Miultiply with subtract, R4 = R7 - (R5 x R6)

Atmel SAM G51 [DATASHEET] 122

11209C-ATARM-20-Dec-13

10.6.6.2 UMULL, UMAAL, UMLAL

Unsigned Long Multiply, with optional Accumulate, using 32-bit operands and producing a 64-bit result.

Syntax
op{cond} RdLo, RdH , Rn, Rm
where:
op is one of:
UMULL Unsigned Long Multiply.
UMAAL Unsigned Long Multiply with Accumulate Accumulate.
UMLAL Unsigned Long Multiply, with Accumulate.
cond is an optional condition code, see “Conditional Execution” .

RdHi, RdLo are the destination registers. For UMAAL, UMLAL and UMLAL they also hold
the accumulating value.

Rn, Rm are registers holding the first and second operands.
Operation
These instructions interpret the values from Rn and Rm as unsigned 32-bit integers.
The UMULL instruction:
e Multiplies the two unsigned integers in the first and second operands.
e Writes the least significant 32 bits of the result in RdLo.
e Writes the most significant 32 bits of the result in RdHi.

The UMAAL instruction:
e Multiplies the two unsigned 32-bit integers in the first and second operands.
e Adds the unsigned 32-bit integer in RdHi to the 64-bit result of the multiplication.
e Adds the unsigned 32-bit integer in RdLo to the 64-bit result of the addition.
e Writes the top 32-bits of the result to RdHi.
e Writes the lower 32-bits of the result to RdLo.
The UMLAL instruction:
e Multiplies the two unsigned integers in the first and second operands.
e Adds the 64-bit result to the 64-bit unsigned integer contained in RdHi and RdLo.
e Writes the result back to RdHi and RdLo.
Restrictions
In these instructions:
e Do not use SP and do not use PC.
e RdHi and RdLo must be different registers.
Condition Flags

These instructions do not affect the condition code flags.

Examples
UMULL RO, R4, R5, R6 ; Miltiplies R5 and R6, wites the top 32 bits to R4
: and the bottom 32 bits to RO
UMAAL R3, R6, R2, R7 ; Multiplies RR and R7, adds R6, adds R3, wites the
; top 32 bits to R6, and the bottom 32 bits to R3
UMLAL R2, R1, R3, RS ; Multiplies RS and R3, adds RL: R2, wites to Rl: R2.

Atmel SAM G51 [DATASHEET] 123

11209C-ATARM-20-Dec-13

10.6.6.3 SMLA and SMLAW
Signed Multiply Accumulate (halfwords).

Syntax
op{ XY}{cond} Rd, Rn, Rm
op{Y}{cond} Rd, Rn, Rm Ra

where:
op is one of:
SMLA Signed Multiply Accumulate Long (halfwords).

X and Y specifies which half of the source registers Rn and Rm are used as the
first and second multiply operand.

If X is B, then the bottom halfword, bits [15:0], of Rn is used.
If X is T, then the top halfword, bits [31:16], of Rn is used.

If Y is B, then the bottom halfword, bits [15:0], of Rm is used.
If Y is T, then the top halfword, bits [31:16], of Rm is used

SMLAW Signed Multiply Accumulate (word by halfword).

Y specifies which half of the source register Rm is used as the second multiply
operand.

If Y is T, then the top halfword, bits [31:16] of Rm is used.
If Y is B, then the bottom halfword, bits [15:0] of Rm is used.
cond is an optional condition code, see “Conditional Execution” .
Rd is the destination register. If Rd is omitted, the destination register is Rn.
Rn, Rm are registers holding the values to be multiplied.
Ra is a register holding the value to be added or subtracted from.
Operation
The SMALBB, SMLABT, SMLATB, SMLATT instructions:
e Multiplies the specified signed halfword, top or bottom, values from Rn and Rm.
e Adds the value in Ra to the resulting 32-bit product.
e Writes the result of the multiplication and addition in Rd.
The non-specified halfwords of the source registers are ignored.
The SMLAWB and SMLAWT instructions:
e Multiply the 32-bit signed values in Rn with:
e The top signed halfword of Rm, T instruction suffix.
e The bottom signed halfword of Rm, B instruction suffix.
e Add the 32-bit signed value in Ra to the top 32 bits of the 48-bit product
e Writes the result of the multiplication and addition in Rd.
The bottom 16 bits of the 48-bit product are ignored.

If overflow occurs during the addition of the accumulate value, the instruction sets the Q flag in the APSR. No overflow
can occur during the multiplication.

Restrictions

In these instructions, do not use SP and do not use PC.
Condition Flags

If an overflow is detected, the Q flag is set.

Examples

Atmel SAM G51 [DATASHEET] 124

11209C-ATARM-20-Dec-13

SMABB R5, R6, R4, R ; Miltiplies bottomhal fwords of R6 and R4, adds
: Rl and wites to R5
SMLATB R5, R6, R4, RL ; Miltiplies top halfword of R6 with bottom hal fword
; of R4, adds R1 and wites to R5
SMLATT R5, R6, R4, RL ; Miltiplies top hal fwords of R6 and R4, adds
; RL and wites the sumto R5
SMLABT R5, R6, R4, RL ; Miltiplies bottomhal fword of R6 with top hal fword
; of R4, adds R1L and wites to R5
SMLABT R4, R3, R2 ; Miultiplies bottomhalfword of R4 with top hal fword of

: R3, adds R2 and wites to R4
SMLAVWB R10, R2, R5, R3 ; Miltiplies R2 with bottom hal fword of R5, adds
; RBtothe result and wites top 32-bits to R10
SMAWI R10, R2, Rl, R5 ; Miltiplies R2 with top hal fword of Rl, adds R5
; and wites top 32-bits to R10.

Atmel SAM G51 [DATASHEET] 125

11209C-ATARM-20-Dec-13

Signed Multiply Accumulate Long Dual

Syntax
op{X}{cond} Rd, Rn, Rm Ra ;
where:
op is one of:
SMLAD Signed Multiply Accumulate Dual.
SMLADX Signed Multiply Accumulate Dual Reverse.
X specifies which halfword of the source register Rn is used as the multiply
operand.
If X is omitted, the multiplications are bottom x bottom and top x top.
If X is present, the multiplications are bottom x top and top x bottom.
cond is an optional condition code, see “Conditional Execution” .
Rd is the destination register.
Rn is the first operand register holding the values to be multiplied.
Rm the second operand register.
Ra is the accumulate value.
Operation

The SMLAD and SMLADX instructions regard the two operands as four halfword 16-bit values. The SMLAD and
SMLADX instructions:

10.6.6.4 SMLAD

e If Xis not present, multiply the top signed halfword value in Rn with the top signed halfword of Rm and the bottom

signed halfword values in Rn with the bottom signed halfword of Rm.

e Orif X is present, multiply the top signed halfword value in Rn with the bottom signed halfword of Rm and the
bottom signed halfword values in Rn with the top signed halfword of Rm.
Add both multiplication results to the signed 32-bit value in Ra.

e Writes the 32-bit signed result of the multiplication and addition to Rd.

Restrictions

Do not use SP and do not use PC.
Condition Flags

These instructions do not change the flags.

Examples

SMAD R10, R2, Rl, R5 ; Miltiplies two halfword values in R2 with
; corresponding hal fwords in Rl, adds R5 and
; wites to R10

SMLALDX RO, R2, R4, R6 ; Miltiplies top halfword of R2 with bottom
; halfword of R4, multiplies bottom hal fword of R2
; with top halfword of R4, adds R6 and wites to
; RO.

Atmel SAM G51 [DATASHEET]

11209C-ATARM-20-Dec-13

126

10.6.6.5 SMLAL and SMLALD

Signed Multiply Accumulate Long, Signed Multiply Accumulate Long (halfwords) and Signed Multiply Accumulate Long
Dual.

Syntax
op{cond} RdLo, RdH , Rn, Rm
op{ XY}{cond} RdLo, RdHi, Rn, Rm
op{X}{cond} RdLo, RdHi, Rn, Rm

where:
op is one of:
MLAL Signed Multiply Accumulate Long.
SMLAL Signed Multiply Accumulate Long (halfwords, X and Y).

X and Y specify which halfword of the source registers Rn and Rm are used as
the first and second multiply operand:

If X is B, then the bottom halfword, bits [15:0], of Rn is used.
If X is T, then the top halfword, bits [31:16], of Rn is used.

If Y is B, then the bottom halfword, bits [15:0], of Rm is used.
If Y is T, then the top halfword, bits [31:16], of Rm is used.

SMLALD Signed Multiply Accumulate Long Dual.

SMLALDX Signed Multiply Accumulate Long Dual Reversed.

If the X is omitted, the multiplications are bottom x bottom and top x top.

If X is present, the multiplications are bottom x top and top x bottom.
cond is an optional condition code, see “Conditional Execution” .

RdHi, RdLo are the destination registers.
RdLo is the lower 32 bits and RdHi is the upper 32 bits of the 64-bit integer.
For SMLAL, SMLALBB, SMLALBT, SMLALTB, SMLALTT, SMLALD and SMLA
LDX, they also hold the accumulating value.

Rn, Rm are registers holding the first and second operands.
Operation

The SMLAL instruction:
e Multiplies the two’s complement signed word values from Rn and Rm.
e Adds the 64-bit value in RdLo and RdHi to the resulting 64-bit product.
e Writes the 64-bit result of the multiplication and addition in RdLo and RdHi.

The SMLALBB, SMLALBT, SMLALTB and SMLALTT instructions:
e Multiplies the specified signed halfword, Top or Bottom, values from Rn and Rm.
e Adds the resulting sign-extended 32-bit product to the 64-bit value in RdLo and RdHi.
e Writes the 64-bit result of the multiplication and addition in RdLo and RdHi.
The non-specified halfwords of the source registers are ignored.
The SMLALD and SMLALDX instructions interpret the values from Rn and Rm as four halfword two’s complement signed
16-bit integers. These instructions:

e If Xis not present, multiply the top signed halfword value of Rn with the top signed halfword of Rm and the bottom
signed halfword values of Rn with the bottom signed halfword of Rm.

e Orif Xis present, multiply the top signed halfword value of Rn with the bottom signed halfword of Rm and the
bottom signed halfword values of Rn with the top signed halfword of Rm.

Add the two multiplication results to the signed 64-bit value in RdLo and RdHi to create the resulting 64-bit product.
e Write the 64-bit product in RdLo and RdHi.

Atmel SAM G51 [DATASHEET] 127

11209C-ATARM-20-Dec-13

Restrictions

In these instructions:
e Do not use SP and do not use PC.

e RdHi and RdLo must be different registers.

Condition Flags

These instructions do not affect the condition code flags.

Examples
SMLAL R4,
SMLALBT R2,
SMLALTB R2,

SMLALD RG,

SMLALDX RG,

Atmel

R8

R7

R7

Miltiplies R3 and R8, adds R5:R4 and wites to
R5: R4

Mul tiplies bottomhal fword of R6 with top

hal fword of R7, sign extends to 32-bit, adds

R1: R2 and wites to RL: R2

Miltiplies top halfword of R6 with bottom

hal fword of R7,sign extends to 32-bit, adds Rl:R2
and wites to RL: R2

Multiplies top halfwords in R5 and RL and bottom
hal fwords of R5 and R1, adds R8:R6 and wites to
R8: R6

Miltiplies top halfword in R5 with bottom

hal fword of R1, and bottom hal fword of R5 with
top hal fword of Rl, adds R8:R6 and wites to

R8: R6.

SAM G51 [DATASHEET] 128

11209C-ATARM-20-Dec-13

10.6.6.6 SMLSD and SMLSLD
Signed Multiply Subtract Dual and Signed Multiply Subtract Long Dual

Syntax
op{X}{cond} Rd, Rn, Rm Ra
where:
op is one of:
SMLSD Signed Multiply Subtract Dual.
SMLSDX Signed Multiply Subtract Dual Reversed.
SMLSLD Signed Multiply Subtract Long Dual.
SMLSLDX Signed Multiply Subtract Long Dual Reversed.
SMLAW Signed Multiply Accumulate (word by halfword).
If X is present, the multiplications are bottom x top and top x bottom.
If the X is omitted, the multiplications are bottom x bottom and top x top.
cond is an optional condition code, see “Conditional Execution” .
Rd is the destination register.
Rn, Rm are registers holding the first and second operands.
Ra is the register holding the accumulate value.
Operation

The SMLSD instruction interprets the values from the first and second operands as four signed halfwords. This
instruction:

e Optionally rotates the halfwords of the second operand.
e Performs two signed 16 x 16-bit halfword multiplications.
e Subtracts the result of the upper halfword multiplication from the result of the lower halfword multiplication.
e Adds the signed accumulate value to the result of the subtraction.
e Writes the result of the addition to the destination register.
The SMLSLD instruction interprets the values from Rn and Rm as four signed halfwords.
This instruction:
e Optionally rotates the halfwords of the second operand.

e Performs two signed 16 x 16-bit halfword multiplications.
e Subtracts the result of the upper halfword multiplication from the result of the lower halfword multiplication.
e Adds the 64-bit value in RdHi and RdLo to the result of the subtraction.
e Writes the 64-bit result of the addition to the RdHi and RdLo.
Restrictions

In these instructions:
e Do not use SP and do not use PC.

Condition Flags

This instruction sets the Q flag if the accumulate operation overflows. Overflow cannot occur during the multiplications or
subtraction.

For the Thumb instruction set, these instructions do not affect the condition code flags.

Examples
SMSD RO, R4, R5, R6 ; Miltiplies bottomhalfword of R4 with bottom
; halfword of R5, nultiplies top hal fword of R4
; with top hal fword of R5, subtracts second from
; first, adds R6, wites to RO

Atmel SAM G51 [DATASHEET] 129

11209C-ATARM-20-Dec-13

SMLSDX R1, R3, R2, RO ;

SM.SLD R3, R6, R2, R7 ;

SMLSLDX R3, R6, R2, R7 ;

Atmel

Mil tiplies bottomhal fword of R3 with top

hal fword of R2, nmultiplies top hal fword of R3
with bottom hal fword of R2, subtracts second from
first, adds RO, wites to RL

Miul tiplies bottomhal fword of R6 with bottom

hal fword of R2, nultiplies top hal fword of R6
with top hal fword of R2, subtracts second from
first, adds R6:R3, wites to R6:R3

Miul tiplies bottomhal fword of R6 with top

hal fword of R2, nmultiplies top hal fword of R6
with bottom hal fword of R2, subtracts second from
first, adds R6:R3, wites to R6:R3.

SAM G51 [DATASHEET] 130

11209C-ATARM-20-Dec-13

10.6.6.7 SMMLA and SMMLS
Signed Most Significant Word Multiply Accumulate and Signed Most Significant Word Multiply Subtract

Syntax
op{R}{cond} Rd, Rn, Rm Ra
where:
op is one of:
SMMLA Signed Most Significant Word Multiply Accumulate.
SMMLS Signed Most Significant Word Multiply Subtract.
If the X is omitted, the multiplications are bottom x bottom and top x top.

R is a rounding error flag. If R is specified, the result is rounded instead of being
truncated. In this case the constant 0x80000000 is added to the product before
the high word is extracted.

cond is an optional condition code, see “Conditional Execution” .

Rd is the destination register.

Rn, Rm are registers holding the first and second multiply operands.

Ra is the register holding the accumulate value.

Operation

The SMMLA instruction interprets the values from Rn and Rm as signed 32-bit words.
The SMMLA instruction:

e Multiplies the values in Rn and Rm.

e Optionally rounds the result by adding 0x80000000.

e Extracts the most significant 32 bits of the result.

e Adds the value of Ra to the signed extracted value.

e Writes the result of the addition in Rd.
The SMMLS instruction interprets the values from Rn and Rm as signed 32-bit words.
The SMMLS instruction:

e Multiplies the values in Rn and Rm.

e Optionally rounds the result by adding 0x80000000.
e Extracts the most significant 32 bits of the result.
e Subtracts the extracted value of the result from the value in Ra.
e Writes the result of the subtraction in Rd.
Restrictions

In these instructions:
e Do not use SP and do not use PC.

Condition Flags
These instructions do not affect the condition code flags.

Examples
SWLA RO, R4, R5, R6 ; Miltiplies R4 and R5, extracts top 32 bits, adds
; R6, truncates and wites to RO
SWLAR R6, R2, R1, R4 ; Miltiplies R2 and Rl, extracts top 32 bits, adds
; R4, rounds and wites to R6
SMWLSR R3, R6, R2, R7 ; Miltiplies R6 and R2, extracts top 32 bits,
; subtracts R7, rounds and wites to R3

Atmel SAM G51 [DATASHEET] 131

11209C-ATARM-20-Dec-13

SMMLS R4, R5, R3, RB ; Miltiplies R5 and R3, extracts top 32 bits,
; subtracts R8, truncates and wites to R4.

Atmel SAM G51 [DATASHEET] 132

11209C-ATARM-20-Dec-13

10.6.6.8 SMMUL
Signed Most Significant Word Multiply

Syntax
op{R}{cond} Rd, Rn, Rm

where:

op is one of:

SMMUL Signed Most Significant Word Multiply.

R is a rounding error flag. If R is specified, the result is rounded instead of being
truncated. In this case the constant 0x80000000 is added to the product before
the high word is extracted.

cond is an optional condition code, see “Conditional Execution” .

Rd is the destination register.

Rn, Rm are registers holding the first and second operands.

Operation

The SMMUL instruction interprets the values from Rn and Rm as two’s complement 32-bit signed integers. The SMMUL
instruction:

e Multiplies the values from Rn and Rm.
e Optionally rounds the result, otherwise truncates the result.
e Writes the most significant signed 32 bits of the result in Rd.

Restrictions

In this instruction:
e donotuse SP and do not use PC.

Condition Flags
This instruction does not affect the condition code flags.

Examples
SMULL RO, R4, R5 ; Miltiplies R4 and R5, truncates top 32 bits
; and wites to RO
SMULLR R6, R2 ; Multiplies R6 and R2, rounds the top 32 bits
; and wites to R6.

Atmel SAM G51 [DATASHEET] 133

11209C-ATARM-20-Dec-13

10.6.6.9 SMUAD and SMUSD
Signed Dual Multiply Add and Signed Dual Multiply Subtract

Syntax
op{X}{cond} Rd, Rn, Rm
where:
op is one of:
SMUAD Signed Dual Multiply Add.
SMUADX Signed Dual Multiply Add Reversed.
SMUSD Signed Dual Multiply Subtract.
SMUSDX Signed Dual Multiply Subtract Reversed.
If X is present, the multiplications are bottom x top and top x bottom.
If the X is omitted, the multiplications are bottom x bottom and top x top.
cond is an optional condition code, see “Conditional Execution” .
Rd is the destination register.
Rn, Rm are registers holding the first and second operands.
Operation

The SMUAD instruction interprets the values from the first and second operands as two signed halfwords in each
operand. This instruction:

e Optionally rotates the halfwords of the second operand.

e Performs two signed 16 x 16-bit multiplications.

e Adds the two multiplication results together.

e Writes the result of the addition to the destination register.

The SMUSD instruction interprets the values from the first and second operands as two’s complement signed integers.
This instruction:

Optionally rotates the halfwords of the second operand.

e Performs two signed 16 x 16-bit multiplications.

e Subtracts the result of the top halfword multiplication from the result of the bottom halfword multiplication.
e Writes the result of the subtraction to the destination register.

Restrictions

In these instructions:
e Do not use SP and do not use PC.

Condition Flags
Sets the Q flag if the addition overflows. The multiplications cannot overflow.

Examples

SMUAD RO, R4, R5 ; Miltiplies bottomhal fword of R4 with the bottom
; hal fword of R5, adds nultiplication of top hal fword
;; of RA with top halfword of R5, wites to RO

SMUADX R3, R7, R4 ; Miltiplies bottomhal fword of R7 with top hal fword
; of R4, adds multiplication of top hal fword of R7
; with bottomhal fword of R4, wites to R3

SMUSD R3, R6, R2 ; Miltiplies bottom hal fword of R4 with bottom hal fword
; of R6, subtracts multiplication of top halfword of R6
; with top halfword of R3, wites to R3

SMUSDX R4, R5, R3 ; Miltiplies bottomhal fword of R5 with top hal fword of
; R3, subtracts nultiplication of top hal fword of R5
; with bottomhal fword of R3, wites to R4.

Atmel SAM G51 [DATASHEET] 134

11209C-ATARM-20-Dec-13

10.6.6.10 SMUL and SMULW
Signed Multiply (halfwords) and Signed Multiply (word by halfword)
Syntax

op{ XY}{cond} Rd, Rn, Rm
op{Y}{cond} Rd. Rn, Rm

For SMULXY only:
op is one of:
SMUL{XY} Signed Multiply (halfwords).

X and Y specify which halfword of the source registers Rn and Rm is used as
the first and second multiply operand.

If X is B, then the bottom halfword, bits [15:0] of Rn is used.

If X is T, then the top halfword, bits [31:16] of Rn is used.If Y is B, then the bot
tom halfword, bits [15:0], of Rm is used.

If Y is T, then the top halfword, bits [31:16], of Rm is used.

SMULW{Y} Signed Multiply (word by halfword).
Y specifies which halfword of the source register Rm is used as the second mul
tiply operand.

If Y is B, then the bottom halfword (bits [15:0]) of Rm is used.
If Y is T, then the top halfword (bits [31:16]) of Rm is used.

cond is an optional condition code, see “Conditional Execution” .
Rd is the destination register.

Rn, Rm are registers holding the first and second operands.
Operation

The SMULBB, SMULTB, SMULBT and SMULTT instructions interprets the values from Rn and Rm as four signed 16-bit
integers. These instructions:

e Multiplies the specified signed halfword, Top or Bottom, values from Rn and Rm.

e Writes the 32-bit result of the multiplication in Rd.
The SMULWT and SMULWB instructions interprets the values from Rn as a 32-bit signed integer and Rm as two
halfword 16-bit signed integers. These instructions:

e Multiplies the first operand and the top, T suffix, or the bottom, B suffix, halfword of the second operand.

e Writes the signed most significant 32 bits of the 48-bit result in the destination register.

Restrictions

In these instructions:
e Do not use SP and do not use PC.
e RdHi and RdLo must be different registers.

Examples
SMULBT RO, R4, R5 ; Miltiplies the bottomhal fword of R4 with the
; top halfword of R5, nultiplies results and
; wites to RO
SMULBB RO, R4, R5 ; Miltiplies the bottomhal fword of R4 with the
; bottom hal fword of R5, nultiplies results and
; wites to RO

SMULTT RO, R4, R5 ; Miltiplies the top halfword of R4 with the top
; halfword of R5, nultiplies results and wites
; to RO

SMULTB RO, R4, R5 ; Miltiplies the top halfword of R4 with the

; bottom hal fword of R5, nultiplies results and

Atmel SAM G51 [DATASHEET] 135

11209C-ATARM-20-Dec-13

; and wites to RO

SMULWI R4, R5, R3 ; Multiplies RS with the top hal fword of RS,
; extracts top 32 bits and wites to R4
SMULVB R4, R5, R3 ; Miltiplies RS with the bottom hal fword of R3,
; extracts top 32 bits and wites to R4.
SAM G51 [DATASHEE 136
Atmel [”

11209C-ATARM-20-Dec-13

10.6.6.11 UMULL, UMLAL, SMULL, and SMLAL

Signed and Unsigned Long Multiply, with optional Accumulate, using 32-bit operands and producing a 64-bit result.

Syntax
op{cond} RdLo, RdH , Rn, Rm
where:
op is one of:
UMULL Unsigned Long Multiply.
UMLAL Unsigned Long Multiply, with Accumulate.
SMULL Signed Long Multiply.
SMLAL Signed Long Multiply, with Accumulate.
cond is an optional condition code, see “Conditional Execution” .

RdHi, RdLo are the destination registers. For UMLAL and SMLAL they also hold the accu
mulating value.

Rn, Rm are registers holding the operands.
Operation

The UMULL instruction interprets the values from Rn and Rm as unsigned integers. It multiplies these integers and
places the least significant 32 bits of the result in RdLo, and the most significant 32 bits of the result in RdHi.

The UMLAL instruction interprets the values from Rn and Rm as unsigned integers. It multiplies these integers, adds the
64-bit result to the 64-bit unsigned integer contained in RdHi and RdLo, and writes the result back to RdHi and RdLo.

The SMULL instruction interprets the values from Rn and Rm as two’'s complement signed integers. It multiplies these
integers and places the least significant 32 bits of the result in RdLo, and the most significant 32 bits of the result in RdHi.

The SMLAL instruction interprets the values from Rn and Rm as two’s complement signed integers. It multiplies these
integers, adds the 64-b